
VINNY
SMITH

CHAIRMAN

&CEO
QUEST SOFTWARE

No.1 i-Technology Magazine in the World

BRINGING MARS DOWN TO EARTH WITH JAVA 3D

WWW.SYS-CON.COM/JDJ VOL:9 ISSUE:6

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

HIGH TECH HAS

GROWN

UP
Q&A WITH
QUEST
SOFTWARE
CHAIRMAN & CEO

How to
Explore
Mars

Without
a Rover

EXCLUSIVE
INTERVIEW!

0 74470 01751 6

0 7
$9.99US $9.99CAN

RETAILERS PLEASE DISPLAY
UNTIL AUGUST 31, 2004

Plus... Exposing J2EE

Urban Myths
An i-Technology

Weather Report
Where’s Open Source in the

App Server Surveys?

DataDirect Connect is a registered trademark of DataDirect Technologies. JDBC is a registered trademark of Sun Microsystems, Inc. in the United States and other countries. DataDirect Technologies is independent of Sun Microsystems, Inc. All other trademarks are the property of their respective owners.

Download your free evaluation today. www.datadirect.com/jdj

Don't take chances connecting your application to your data. Rely on DataDirect™ Technologies for premium
JDBC drivers with support for advanced functionality like distributed transactions, connection pooling, and
BLOB/CLOB. Our Type 4 drivers are fully database independent and
are the SPECjAppServer/ECPerf performance and scalability leader.

www.datadirect.com 800-876-3101

5 June 2004www.SYS-CON.com/JDJ

AAdd

6 June 2004 www.SYS-CON.com/JDJ

ccasionally into any technology
writer’s life, a little rain must
fall.

Sometimes of course it’s not
so much a little rain as a full-blown
typhoon, such as when free and open
source software (also known as FOSS for
short) blows in as a development
methodology.

Phrases like “all bets are off” come
immediately to mind. We should all have
guessed that it was going to mean
stormy weather ahead when it took
open source activist Bruce Perens
numerous e-mails with his peers back in
June 1997 to compile what was initially
called “The Debian Free Software
Guidelines” (referring to Debian, a dis-
tribution of Linux), but which eventually
became shorn of Debian-specific refer-
ences to become the “Open Source
Definition” (www.opensource.org/
docs/definition_plain.php).

While we’re on the subject of Linux
distros, Red Hat founder Bob Young is a
one-man hurricane. When he blew into
an open source and free software confer-
ence held at the University of Toronto in
May, he was scathing about the business
model that fails to charge for software:
“Good businesses will deliver more value
to society than any nonprofit will,” he
gushed. “The profit motivation is actually
a very good one; it makes sure we’re
delivering real value to our customers.”

Contrast this with Professor Eben
Moglen’s comments at the same confer-
ence, during a panel discussion called
“Free and Open Source Software as a
Social Movement,” and you begin to
realize why the i-technology weather is
so stormy, on a seemingly permanent
basis. Everyone wants to be in charge!

“Whoever controls software, controls
life,” said Moglen, who is also legal coun-
sel to the Free Software Foundation. He
added: “Well, it had better be us. That’s
the real political meaning of the free soft-
ware movement. Civil freedom in the
21st century requires human beings to
retain control over the technological
environment that surrounds them.”

The subtext of the three-day event –
as with any technology conference but
most especially those concerning
Internet technologies – was the future.

The future of the future, if you will. Of
the IT future, anyway.

This is the one thing that unites every
faction of the technology space: wanting
to second-guess the shape of things to
come. That’s what everyone wants to
know, in the hope perhaps of avoiding
another dot-com boom-bust cycle. But
that is the only thing that unites technol-
ogists of every stripe; once it comes to
describing that shape, defining it and
unpacking it so that IT organizations can
prepare for it and move toward it, the
tech community becomes a sometimes
bewildering place, buffeted by winds
from every direction.

Perhaps the answer lies in “The Grid” –
that seems to be the hope anyway of
Sun’s Greg Papadopoulos, recently
named as one of the 25 top CTOs of 2004,
quite specifically for having taken the IT
industry “one step closer to grid comput-
ing.” Papadopoulos, a 20-year industry
veteran and former MIT computer sci-
ence professor, defines grid computing as
“the decoupling of applications from spe-
cific hardware platforms.” After this will
come the virtualization of those plat-
forms, Papadopoulos believes. This
would allow IT organizations to create a
network-based “computing and storage
pool,” and be a lot more dynamic in asso-
ciating the computation they perform
with the resources they have available.

If not grid computing, perhaps it is
“utility computing” that will change
everything. Embracing a shift from tra-
ditional infrastructure to utility comput-
ing, the IT gurus insist, “requires
changes across three dimensions: peo-
ple, processes, and technology.”
Certainly that is going to slow it down a
tad, but you can see their point: a strong
technical solution and architecture
won’t ever succeed without “buy-in”
from application teams and sponsors
for the changes in process. Any shift,
whether it be to grid computing, utility
computing, autonomic computing, or
the Next Big Thing, requires a solid plan
and organizational structure, otherwise
neither application teams nor IT spon-
sors will benefit from reduced costs,
faster time-to-market, or any of the
other perquisites that accrue from a
shared infrastructure.

FROM THE GROUP PUBLISHER

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Jeremy Geelan

An i-Technology
Weather Report

O

International Advisory Board
CCaallvviinn AAuussttiinn (Sun)

JJaassoonn BBeellll (Independent)
JJaassoonn BBrriiggggss (Independent)

Jeerreemmyy GGeeeellaann (SYS-CON)
TThhoorrsstteenn LLaauuxx (Sun)
RRiicckkaarrdd ÖÖbbeerrgg (Independent)

JJooee OOttttiinnggeerr (Independent)
BBiillll RRootthh (E.piphany)

AAjjiitt SSaaggaarr (Independent)
EErriicc SSttaahhll (BEA)

JJoonn SStteevveennss (Apache)
AAaarroonn WWiilllliiaammss (JCP)

AAllaann WWiilllliiaammssoonn (SYS-CON)
JJooee WWiinncchheesstteerr (IBM)

BBllaaiirr WWyymmaann (IBM)

Editorial
Editor-in-Chief: JJoosseepphh OOttttiinnggeerr
Editor-at-Large: AAllaann WWiilllliiaammssoonn

Executive Editor: NNaannccyy VVaalleennttiinnee
Java Enterprise Editor: KKiirrkk PPeeppppeerrddiinnee

Desktop Java Editor: JJooee WWiinncchheesstteerr
Gaming Editor: JJaassoonn RR.. BBrriiggggss

Contributing Editor: AAjjiitt SSaaggaarr
Contributing Editor: GGlleenn CCoorrddrreeyy
Contributing Editor: JJaassoonn BBeellll

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: TTaammii BBeeaattttyy

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeennnniiffeerr VVaann WWiinncckkeell

Assistant Editor: TToorrrreeyy GGaavveerr
Online Editor: LLiinn GGooeettzz

Research Editor: BBaahhaaddiirr KKaarruuvv,, PPhhDD

Writers in This Issue
Reza Behforooz, Jason Bell, Jeremy Geelan,
Michael Jacobs,Pramod Jain, Onno Kluyt,

Satya Komatineni, Warren MacEvoy, Chris Moran,
Joseph Ottinger, Kirk Pepperdine, Bill Roth,

Greg Sporar, David Stephenson, Hani Suleiman,
Bernhard Wagner, Joe Winchester, Geoffrey Wiseman

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan
is group publisher of

SYS-CON Media, and is
responsible for the

development of new titles
and technology portals

for the firm. He regularly
represents SYS-CON
at conferences and

trade shows, speaking to
technology audiences both

in North America
and overseas.

jeremy@sys-con.com

8 June 2004 www.SYS-CON.com/JDJ

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com

Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa robyn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com

Associate Sales Managers:
KKrriissttiinn KKuuhhnnllee kristin@sys-con.com

BBeetthh JJoonneess beth@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com

Associate Editors:
JJaammiiee MMaattuussooww jamie@sys-con.com

GGaaiill SScchhuullttzz gail@sys-con.com
JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com

Assistant Editor:
TToorrrreeyy GGaavveerr torrey@sys-con.com

Online Editor:
LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com

Lead Designer:
TTaammii BBeeaattttyy tami@sys-con.com

Art Director:
AAlleexx BBootteerroo alex@sys-con.com

Associate Art Directors:
LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com

RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com

Accounting
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com

Accounts Payable:
BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Conference Manager:
LLiinn GGooeettzz lin@sys-con.com

Customer Relations
Circulation Service Coordinators:

SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com
EEddnnaa EEaarrllee RRuusssseellll edna@sys-con.com

LLiinnddaa LLiippttoonn linda@sys-con.com

JDJ Store Manager:
BBrruunniillddaa SSttaarrooppoollii bruni@sys-con.com

t’s hard to find great Java applications.
Next month’s JDJ contains our

Editors’ Choice Awards, and so far
for me it has the feel of a repeat –

even though I decided to focus on
applications I’ve been using day-to-
day outside my own personal develop-
ment environment. That’s frustrating.

I think that we – the Java developers
– are creating programs and environ-
ments that are good across the board –
but rarely great. I try to reserve my
awards for those things that I don’t
consider “adding” to my development
or deployment environment – they are
my environment. They’re the standard
things I run without thinking about it.

That said, I tried to reevaluate
everything from the viewpoint of
someone who wasn’t used to having
my particular toolset at hand, by
stepping back and say-
ing, “Would I really
like this tool so
much if I hadn’t
been using it for
so long? What
would I think,
coming in as
someone unex-
posed to these pro-
grams?”

The results aren’t encourag-
ing. To be sure there are a few stand-
outs, and a few programs that sort of
come close, but picking three pack-
ages that need no qualification or
justification is very, very hard. The
problem, as I see it, is that Java cre-
ates applications that are typically
above average…and that’s it. To use a
sports analogy, Java applications
would almost always place in the top
five, but rarely win the champi-
onship.

That doesn’t mean Java isn’t worth
working with by any means. Placing in
the top five consistently would be a
marvelous thing, to an organization
like the Atlanta Hawks or the San Diego
Chargers, both typically woeful teams.

It still begs the question, though: How
do we get Java over that hump, to cre-
ate programs that really shine, not just
from a user interface perspective but
from the user’s perspective?

Plenty of people have tried, and it’s
always getting better to be sure, but I
don’t know if the attempts made so far
quite have the “it” Java needs.

We need to find a way to inspire pas-
sion for and with Java – apart from the
invective hurled in all directions over
SWT and Swing, JDO versus EJB versus
Hibernate versus SDO, and Sun’s
licenses.

• • •
On other topics, I’d like to welcome

Karl Avedal and Calvin Austin to the
editorial troupe at JDJ.

Karl is a longtime acquaintance
and one of the two founders of

IronFlare, the company that
created the Orion

Application Server. He
left IronFlare a year ago
and is now working on a
research project on cre-

ating and using
domain-specific
languages. In addi-
tion to all this, he’s

served on several
expert groups within the

J2EE field and has co-authored two
J2EE books.

Calvin, no slouch himself, is the
J2SE 1.5 specification lead and the
lead engineer on Sun’s Java on Linux
port. He’s been at Java Software since
1996 (before I even started using Java!)
and co-authored Advanced Program-
ming for the Java 2 Platform (Addison-
Wesley).

Both of these guys are great assets
to JDJ and I’m looking forward to
working with them. I think they’ll be
able to contribute quite a bit to the
magazine as a whole, and both have
seemed happy to be able to serve in an
editorial role.

Think long term, and enjoy. :)

FROM THE EDITOR-IN-CHIEF

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com)
and is a frequent contributor

to open source projects in
a number of capacities.

Joe is also the acting
chairman of the JDJ

Editorial Advisory Board.

josephottinger@sys-con.com

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

In Search of Greatness

I

Joe Ottinger
Editor-in-Chief

The right Java, whatever the gig.

go.borland.com/ j6

Made in Borland® Copyright © 2004 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brand and product names are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries. • 21715.1

B orland
¤

JBuilder.
¤

The #1 Java™ tool in the world for a reason. Pick the size that fits your needs. Automate
the routine stuff. Handcraft the unique. Have an active voice at every stage in the process. Move faster, and make
every project a hit. Whether your application is headed to the Web, enterprise, or mobile, just pick the feature set
you need. And start rockin’!

Customizable code editor • Refactoring • Local and remote debugging • Integrated unit testing • Two-way visual Struts designer • JSP™ tag library/
framework support • XML and Web Services • Mobile application development • Advanced build and configuration
management with Apache™ Ant • Visual EJB™ designer • Two-way deployment descriptor editor • Archive builder •
Integration with all major J2EE™ application servers

10 June 2004 www.SYS-CON.com/JDJ

ust recently Gartner reported that
IBM has overtaken BEA in applica-
tion server market share. The inter-
esting thing is that Gartner’s
expression of market share is in a

single number, dollars. While dollars are
certainly an important factor in declar-
ing a market leader, is this an accurate
measure of market lead? If it is, where
does that leave open source offerings
such as Jonas and JBoss?

My past experiences have taught me
to question claims or proclamations that
one company has a lead in a particular
market share. Take BEA for
instance. When the application
market was immature, BEA’s
WebLogic revenue figures includ-
ed those revenues that were gener-
ated by sales of Tuxedo. Not exactly a
fair measure for those companies
that were only offering an applica-
tion server at the time. Not that
anyone expects BEA (or IBM for
that matter) to be fair. After all, these
companies know that people use these
values to aid them in their decisions to
ride with one vendor over another. As
such, they understand that their survival
depends upon those numbers being
larger than their competitors’. When peo-
ple buy into the illusion of success that is
created by these numbers, they create a
reality and in doing so reinforce the
myth that the numbers have meaning.

The next question is, how does open
source get reported? By definition, open
source draws no licensing revenues and
by definition carries a 0% market share.
Is it just me or am I right in saying that it
just feels wrong to be basing an impor-
tant decision on a report that cannot
accurately describe the usage of all the
offerings in the space that is being con-
sidered? It leads me to question the
validity of any conclusion drawn from a
study that demonstrated a clear inability

to adequately model the space under
consideration. But then again, we are
talking about perceptions and percep-
tions can easily become reality.

To be fair, you cannot blame Gartner
for this type of reporting. After all, it is
this type of information that their cus-
tomers are demanding. These customers
will be making large investments into
systems that are critical to their business
needs. They need to know if the compa-
nies they are working with will remain
solvent. In addition, they need to know
if these companies will remain commit-

ted to the products that they are cur-
rently trying to sell. In their minds, the
ability to draw in larger-than-life rev-
enues means that a company will
remain solvent and committed.

Take HP’s entry into the application
server market on October 24, 2000. “We’ll
form the core of HP’s Internet offerings,”
said Kevin Kilroy, Bluestone’s chairman
and CEO. The buzz at the time was that
this purchase would quickly propel HP
into third place in the application server
market. By June 2002, HP was reportedly
in talks to sell the technology to Oracle.
This can only be read as vindication to
those who ignored the hype and took
notice of Bluestone’s 4% market share.
The reality was that no one really under-

stood how HP could expand upon a 4%
share under the economic conditions of
the day. The question is, was that 4%
value accurate and could the results have
been different if there was a fair way to
calculate market share?

It seems self-evident that if those
people who were making the final pur-
chasing decision limited themselves to
only considering reports of market
share, there would be no open source
application servers in use. After all, who
in their right mind would choose to
base a business-critical application on a

product that enjoys a 0% market
share? Since they are in use, clearly
their market share is not 0%. That

said, how can you measure it?
There doesn’t appear to be a

good answer to the question. To the
point, JBoss market share is reported

to be 27%. How did BZ Media come up
with the 27% figure? Again, I don’t know
how but here is a sample of their
methodology for another study. “An e-
mail was sent out to 10,000 randomly
selected SD Times subscribers inviting
them to participate in a study. Excluding
bounces, the net number of surveys
delivered was 9,792.” How many of these
responded is not mentioned. The fact
that response is optional results in the
survey being nonscientific. Sure, it’s an
improvement in that it appears to
include open source, but is it any better
or are the results any more reliable?

It’s difficult to say if this survey
would produce a more reliable measure
of market share than revenues. What it
does say is that our choice of applica-
tion server almost seems random,
which is what you’d expect to see in a
commoditized market where you
should not find any differentiating fac-
tors between competing products. If I
recall correctly, this was one of the orig-
inal objectives behind the J2EE.

Kirk Pepperdine is the
chief technical officer at

Java Performance Tuning.com
and has been focused on
object technologies and
performance tuning for

the last 15 years. Kirk is a co-
author of Ant Developer’s

Handbook (Sams).

kirk@javaperformancetuning.com

Kirk Pepperdine
Java Enterprise Editor

Where Is Open Source
in the App Server Surveys?

J

JAVA ENTERPRISE VIEWPOINT

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

‘HIGH TECH HAS

GROWNUP’
‘HIGH TECH HAS

GROWNUP’

Exclusive Q&A
with

Vinny Smith
Chairman and CEO

of

Quest Software

12 June 2004

Interview by Jeremy Geelan

EXCLUSIVE
JDJ Interview...

www.SYS-CON.com/JDJ

13June 2004www.SYS-CON.com/JDJ

A relative newcomer to the Java market, Quest Software’s avowed

mission is “to simplify IT management.” JDJ asks Quest chairman and

CEO Vincent C. (Vinny) Smith about J2EE, .NET,Web services, SOAs, the

overall landscape for IT organizations, and the future of the technology

space as he sees it – including the growth of the corporate Java market.

irst and foremost, thank you for agreeing to talk with JDJ, the
world’s leading i-technology magazine.

JDJ: Why did Quest Software get into Java? Is this part of a bigger
Quest game plan? Where do you plan to take your Java solutions?
Vincent Smith: Java and J2EE are now an integral part of the IT tech-
nology stack. As a leader in application management, we needed to
support our customers in developing and putting into production
Java-based applications so that they can develop applications faster
and manage them more effectively.

Our plan is to help make Java an even bigger success in enterprise
applications with solutions that continue to improve developer pro-
ductivity and application performance management. As Java and
J2EE applications become more tied together with existing IT sys-
tems and service-oriented architectures, I think Quest Software is
the company most able to provide integrated solutions that detect,
diagnose, and resolve performance issues across all of these applica-
tion components, regardless of platform or infrastructure vendor.

For example, our new Application Performance Management (APM)
Suite for the J2EE platform enables companies to manage critical J2EE
applications at every stage of the application life cycle with total confi-
dence. It includes integrated application monitoring, real-time applica-
tion server diagnostics, and system-wide J2EE diagnostics right down
to individual lines of Java code. And it’s heterogeneous, supporting all
of the top Java application servers and platforms used by IT.

With our history of leadership in heterogeneous database devel-
opment and management, we believe we are the only company that
can offer IT this kind of freedom for Java with our solutions for Java-
based application development and management. Providing new
value to our Java customers will continue to be an ongoing focus for
Quest Software.

JDJ: Tell us a little about Quest Software’s experiences with Java,
compared to .NET. Do you believe there will always be room for
both technologies?
VS: I visit customer sites pretty often and you know, we haven’t seen
a lot of .NET, at least in large applications. I’m definitely seeing J2EE
being used a lot in critical, high-volume enterprise applications. It’s
in those types of applications where management of performance
and scalability is an issue.

I think J2EE and .NET will ultimately end up coexisting in the
market. J2EE is great for large-scale enterprise applications, while
.NET may be better suited for department-level applications and
where rich GUI clients are a requirement. Businesses will choose
the technology that best meets their needs for their applications.

JDJ: Do you share the view that J2EE is over-complicated? Or is the
latest generation of development tools easing the pain?
VS: J2EE is certainly very complex – however, I don’t think it’s overly
complicated. J2EE is designed to be a base platform for high-vol-
ume, scalable business applications. It’s as complicated as it needs
to be to achieve this goal.

But now that the base platform and underlying infrastructure of
J2EE is there, it needs to be made easier to use – for developers,
architects, quality assurance, and system administrators. Vendors
like Quest are stepping up to make using J2EE easier and to help
newcomers be productive faster. Industry groups like the Java
Tools Community (JTC) and the Eclipse Foundation are doing
their part. It’s in everyone’s interest to make J2EE more useful for
the enterprise.

JDJ: Will Java ever be challenged seriously in the enterprise, do you
think, or on the server side?
VS: Probably – there’s nothing as constant as change in this
business.

It’s certainly not news that Microsoft has its sights set on the
enterprise. We see it today in our database business with SQL
Server. But I believe that .NET and Windows still have some
maturing to do in the areas of security, transaction handling, and
scalability before we will see it truly challenging Java for critical
enterprise and customer-facing Web applications.

JDJ: Take a moment to reflect on Java’s history. What’s one thing that
Java has gotten completely right – and, conversely, is there anything
in Java’s history that you would like to change?
VS: J2EE is a clearly a huge success. It has become the preeminent
enterprise software platform in a remarkably short amount of time.
In retrospect, more attention could have been paid to J2EE’s com-
plexity issues. But no technology is perfect. Back in the old days of
“green screen” applications, there wasn’t a lot between the applica-
tion code and the OS, and those applications were also arguably
less complex. Today, we have Internet architectures and the distrib-
uted J2EE technology stack, which enables much more complex
applications to be built relatively easily. But, this also brings new
and not-always-known dependencies to the system. I think the Java
community is well on its way to addressing the issues of complexity.

JDJ: When Quest acquired Sitraka, many developers were concerned
as to the fate of favorite tools like JProbe, the first toolset for 64-bit
Java – what’s the status of JProbe today?
VS: All of the products developed by Sitraka, including JProbe, are
alive and well. I’m glad you asked this, because even though Quest
is a relatively new name in the Java market, we have an impressive
set of Java solutions that have, over the years, obtained tremendous
reputations as leading Java tools. In fact, over 8,000 companies use
Quest Java products today.

We recently released a new version of Quest JProbe with some big
enhancements, including new features for investigating memory
use. Earlier this year, we also extended JProbe’s 64-bit Java support
to Windows and Linux environments.

We just announced a major new version of Quest PerformaSure
with new support for Oracle9iAS and BEA WebLogic JRockit, a new
SQL browser for better application/database diagnosis, and other
diagnostic features that our customers have been asking for.
PerformaSure, along with JProbe, is a key component of our new
complete life-cycle application management solution, the Quest
Application Performance Management (APM) Suite for the J2EE
platform.

Quest JClass also continues to be very popular with Java develop-
ers. We were pleased to see JClass ServerViews win a JOLT
Productivity Award this spring. We are continuing to enhance the
product line and you may see a new release by the time you read
this. There’s more going on that we could get into, but I think it’s
clear that Quest Software is fully committed to the Java market.

Exclusive: JDJ Industry Profile

F

14 June 2004 www.SYS-CON.com/JDJ

Exclusive: JDJ Industry Profile

JDJ: Sometimes acquisitions are done to eliminate competition. And
sometimes acquired products stagnate in a larger company. Can you
be more concrete about Quest’s future directions for its Java products?
VS: Our Java solutions fit very well with our overall mission to sim-
plify IT management. Any technology stack that is key to the enter-
prise is important to Quest. We have made acquisitions in the Java
space because of how important Java has become to the enterprise.

Quest Software’s products and solutions are a reflection of the grow-
ing number of complex technology stacks IT relies on. Besides Java-
based systems, IT organizations are tasked with managing complex
custom application and database infrastructures, along with an exten-
sive Microsoft-specific infrastructure (Exchange, Active Directory, etc.).

Although Quest does have products for managing Microsoft environ-
ments and database infrastructures, we think of Java as a distinct mar-
ket and have structured the company with a dedicated team focused on
delivering solutions to help manage the entire Java application life
cycle. We have done this for Java application environments first,
because that’s where we see the demand and the growth opportunity.

JDJ: Our readers are always interested in hearing about what people
are doing with Java. Can you talk about some of the most interesting
Java applications you’ve seen in production?
VS: One interesting J2EE application I’ve seen is a Web-based song
purchase application one of our customers, a major music retailer,
has been building. It’s along the lines of the online Apple Music Store.
With J2EE they have been able to build a scalable, customer-facing
application and put it into production in mere months. With the
Quest APM Suite for the J2EE platform, we helped optimize the scala-
bility of the system so that when it went live it could handle hun-
dreds of simultaneous end-user transactions. Another Java applica-
tion that many readers have heard about is the NASA Maestro soft-
ware used to operate and visualize the data collected by the Mars
Rovers. The application team used Quest JProbe to tune the Java
code, and also used JClass components under the hood. The devel-
opment team has said that they couldn’t have put the project togeth-
er as quickly or cost-effectively without tools like these. Very cool.

JDJ: What are some of the biggest issues you see facing Java develop-
ers and managers today?
VS: I see two particularly big issues for corporate Java developers.

The first is managing large-scale production J2EE applications. Ideally
once an application goes into production, IT operations staff should
manage it, but when a newly deployed J2EE application develops per-
formance or scalability issues, the developers are usually needed (along
with DBAs and other functional experts) to diagnose the problem. Even
the most experienced J2EE developers have a hard time diagnosing
issues in systems as large and complex as we have now. Intelligent, col-
laborative diagnostic tools really are necessary to diagnose and resolve
problems quickly and keep critical J2EE systems running smoothly.

The second issue is dealing with increasingly heterogeneous Java
infrastructures. Most companies are taking a “best of breed” approach
in selecting Java and J2EE infrastructure, including the application
servers, clustering, database back ends, etc. It’s hard for one team to
manage Java and J2EE application components when some run on
WebLogic, some are WebSphere/DB2, and some are open source
approaches like JBoss, Linux, and MySQL. Ideally, companies and
developers should choose management and development tools that
give them the freedom to use whatever J2EE infrastructure they like
today, knowing that they can have the freedom to change it over time.

JDJ: What do you think Java’s role will be in the future of the enter-
prise applications?
VS: Java really is becoming the core component here. Packaged

application vendors are adopting Java for new, modern user inter-
faces and new ways of accessing packaged and legacy applications.

For example, client-side Java-based GUIs provide a highly pro-
ductive user interface for heavy users of a packaged application sys-
tem. Less frequent or higher-level users of packaged apps have the
option of server-side Web-based Java user interfaces, whether
they’re standalone or part of a “dashboard” portal set-up.

Beyond direct user interfaces, we see Java making it possible for pack-
aged applications to be used in entirely new ways. I’m talking about Web
services and service-oriented architectures. Rather than simply a user
interface, Java can enable IT to build entirely new “composite” applica-
tions that use elements of their legacy packaged applications as service
providers, data feeds if you will. This element is really changing the way
that packaged applications are evolving, and it’s really exciting.

JDJ: What’s going to be big in the next 18 months? Are there still new
business opportunities in Java? Or should those wishing to invest in
startup companies stick to investing in Microsoft’s architecture and go
with .NET instead?
VS: Are there still new business opportunities in Java? You bet. But I
don’t believe individual investors should get into startups – that’s the
role of venture capital firms. Let me discuss the areas we are most
interested in right now, that are most relevant to our customers.

First, there’s the growing size of the corporate Java market. Java on
both the server and desktop has matured to the point where now
smaller and mid-sized companies are comfortable committing to it
for their critical business applications. This increases the size of the
market for Java solutions from development to diagnostic to appli-
cation management.

This trend actually highlights one particular opportunity – the need to
make development, tuning, and management tools smarter and more
usable for companies new to Java. That might mean providing visual
development tools with more expert performance tuning, or application
management that works with adaptive infrastructure environments.

Then there are some emerging Java opportunities coming along,
such as Web services, that have the potential to greatly improve
business flexibility and productivity.

JDJ: You actually started as an Oracle salesman. What advice would
you have for someone young and starting out in the technology space
today: should they be writing it, investing in it, selling it, or avoiding
it?
VS: You’ve got to go where your passion is. I’m passionate about mak-
ing a real difference in how businesses use software to be more effec-
tive, and I followed that passion through good times and bad. It’s the
same for anyone starting out in high tech today – find the area that
drives you and go for it. There’s tons of room for innovation in IT today,
but like any maturing industry, high tech has grown up. I visit a lot of
companies and see their IT problems firsthand; IT will gladly pay for
solutions, but they have to provide real value, real ROI. So high tech
still needs fresh ideas and enthusiastic newcomers, in all areas.

JDJ: Who would be the one client not yet captured by Quest that you’d
be proudest to win over in 2004?
VS: For our Java business? How about Microsoft? <grin>

Seriously, though, it’s not the next sales win that I really get jazzed
about, it’s when a customer calls me to tell me that we made a big
difference in their business. Or when I get an e-mail from a cus-
tomer thanking our people for going that extra mile to help them
really solve their technology problems.

It’s a testament to our great products and awesome, committed
staff to hear this from our customers. And that’s what makes me
proud.

Co
py

ri
gh

t
©

 2
00

4
Ca

no
o

En
gi

ne
er

in
g

AG
. A

ll
R

ig
ht

s
Re

se
rv

ed
.

Ja
va

 a
nd

 a
ll

Ja
va

-b
as

ed
 t

ra
de

m
ar

ks
 a

re
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

Rich Thin Clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

� S e r v e r- s i d e p r o g r a m m i n g m o d e l :
develop scalable web applications for thousands of users
as simply as stand-alone Swing applications.

� S u p e r i o r s e c u r i t y :
no application code is executed on the client, nothing
is stored in a browser cache.

� A p p l i c a t i o n d e p l o y m e n t o n s e r v e r :
a lean Java presentation engine on the client serves
any number of applications.

� P u r e J a v a l i b r a r y :
use your favorite IDE and get add-on tools for visual editing,
client/server simulation, and load/performance testing.

UltraLightClient offers
a server-side API to Swing,
providing rich GUIs
for J2EE applications.

16 June 2004 www.SYS-CON.com/JDJ

t has become fairly common these
days when looking through blogs
and various opinion pieces to hear
a common cry: J2EE is a terrible,

unwieldy, and cumbersome specifica-
tion. While documentations from Sun
and other vendors praise it, there is a
lot of hostility and negativity toward it
“down in the trenches,” so to speak.
These trenches, of course, are populat-
ed with technologists who are always
on the lookout for the next big thing,
and the rank and file folks who look up
to the technologists for wisdom and
guidance.

In my opinion, many of these com-
plaints are misguided, spread through
rumor mongering and anecdotal sto-
ries with little to no effort made to vali-
date them or place them in context.

Without further ado, I present you
with nine urban legends surrounding
J2EE.

1. JNDI is awkward.
JNDI is a lightweight directory ser-

vice mandated by the J2EE spec that
essentially consists of a directory of
services where components can look
up other components. Many people
will speak derisively of JNDI; the latest
buzzword compliance laws decree that
you must use dependency injection to
have components injected in rather
than explicitly looked up. While both
approaches have their merits and dis-
advantages, it’s far from clear whether
there is an overall winner.

JNDI is tremendously useful when
you consider the fact that many vendor
implementations will throw in features
like a global clustered JNDI tree. Locally
scoped JNDI references also free you
from having to embed resource absolute
names in your source code. JNDI is also
fairly straightforward and easy to use;
the barrier to entry is low enough that it
really does not qualify as an obstacle.

2. J2EE is difficult to develop in.
While there is some merit to the

argument that EJBs and J2EE in general
do not cater much to the in-vogue
“agile” and “test-driven” development
mentality, a lot of the blame should be
placed squarely on vendors’ shoulders.

For example, there are still vendors
who do not support rapid hot-deploy,
exploded application directories and
runtime configuration. When having to
work with such servers, it’s not surpris-
ing that developers are turned off of
J2EE and complain that it takes 20 min-
utes to preview every EJB change. It
doesn’t help either that many of these
vendors had terrible implementations
that performed abysmally and forced
the hapless user to jump through any
number of fire hoops to get things
done.

The deployment descriptor hell is
also a valid argument, but tools like
XDoclet and the upcoming J2EE 1.5
greatly ease this pain. Going further,
there’s a blossoming market of tool
vendors who try to cater to “rank and
file” developers. WebLogic Workshop,
WSAD, and Sun’s Java Enterprise Studio
are all fine examples of vendors step-
ping in to try to cater to a certain kind
of developer. It’s also important to con-
sider the target audience for J2EE. A
simple rule of thumb applies: if it does-
n’t fit, don’t use it. Many people forget
the “enterprise” aspect of J2EE. Don’t
overassume your project’s needs and,
even more important, don’t overas-
sume your own skill level. J2EE is not a
trivial spec; it attempts to tackle some
very thorny issues that, contrary to
what you might have been told, do not
have a simple solution.

3. EJBs must be avoided at all costs.
EJBs have been much maligned

recently. Many loud and outspoken
developers have made quite a bit of a
ruckus over the inadequacies of EJBs,
vowing never to touch them with a 10
foot pole. Unfortunately, in many situa-
tions this has resulted in a “let’s throw
the baby out with the bathwater” men-

tality. EJBs are being punished for bad
marketing from Sun. No, they are not a
silver bullet. In a lot of cases, entity
beans are inappropriate and a huge
overkill.

When it comes to session beans and
message-driven beans though, there
are clear benefits and advantages that
should not be ignored due to the fright-
ful aura that the letters “EJB” seem to
have floating around them. Don’t be so
eager to dismiss the benefits of a com-
ponent architecture that frees you from
having to worry about pooling, security,
transactions, clustering, and distribu-
tion. Part of the blame, of course, has to
be placed on examples such as the
early Petstore examples that encour-
aged the use of EJBs when it very often
just didn’t make any sense; but more on
that later.

4. J2EE is dead!
In the trenches, EJBs on the sly have

had and continue to have huge market
penetration; while few people brag
about this, nobody is surprised to find
them slowly wriggling their way into
many enterprises.

It’s rare to find a financial institute
that does not make extensive use of
JMS. It’s rare to find an enterprise that
supports Java that has not purchased at
least one J2EE application server. It’s
often more than a token purchase too,
with important applications and servic-
es running on these servers. Also easy
to forget is that a J2EE application will
often not contain a single EJB (and be
the better for it!). You’re still using J2EE,
and an application server will still pro-
vide your application with a lot of
value-add. It’s not a stigma to be bound
to J2EE!

5. J2EE is unportable.
From the outset, one of the princi-

ples of J2EE was that vendors were free
(and encouraged) to have their own
deployment descriptors that allow
deployers to fine-tune an application’s

Hani Suleiman is the CTO of
Formicary (www.formicary.net),
a consulting services and portal

solution provider. He is also
a developer on a number of

popular open source projects.

hani@formicary.net

Exposing J2EE Urban Myths
The reality behind the legends

I

IN THE ENTERPRISE

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

by Hani Suleiman

18 June 2004 www.SYS-CON.com/JDJ

deployment. Many vendors foolishly implemented this by
mandating their custom deployment descriptors before
deploying.

Realistically, you can have your applications be portable.
Expecting it to be a trivial matter of dropping in the .ear file
is naive and akin to expecting a Windows-developed Swing
application to work flawlessly on an OS X machine without a
single misplaced pixel. Sure it’s doable once you do it a few
times, but it takes knowledge of both Swing implementations
to get it right.

To be fair to Sun, there have been a number of JSRs to
help ease this problem. JSR-77 and JSR-88 (J2EE manage-
ment and J2EE deployment, respectively) both attempt to
reduce the vendor variance in these two areas.

Part of the problem also lies in the confusion about J2EE
roles. While in reality it might be one developer who develops,
assembles, and deploys an application, it pays to keep in mind
that those three tasks are performed by different roles. A
deployer, for example, would not know about the code that is
being deployed, but would be able to spend the time and
effort required to ensure the application is configured correct-
ly to be deployed into a particular container and environment.

6. J2EE is expensive.
Yes, it’s hugely expensive if you go with the big name ven-

dors. Even though some have dropped their prices, don’t
expect to feel you’ve gotten a good deal if you go for the IBMs
and BEAs of this world. There are a number of both cheap
and free alternatives that work just as well (and in some
cases, just as badly!) as the “big” players out there. Whatever
your budget, you’re likely to find a vendor who caters to it.

The hidden aspect of expense is the nonmonetary costs
associated with it. Yes, you do need someone comfortable in
a J2EE environment. For some of the free offerings, you cer-
tainly need to invest the time and effort it takes to get some
of the more obscure features you’re after to work. Do not
neglect to factor in the cost of the time and effort you’d be
wasting by going to a third-party library and spending hours
reconfiguring it for every new application.

7. API “X” is too complex/unclear; it’s easier to roll your own
instead.

It’s amazing how people choose to do their own connec-
tion pooling, or try to manage transactions “manually.”
Could it be that people don’t know that every J2EE container
is required to provide data sources that can be looked up? Do
they not know that every container supports pooling out of
the box, that more often than not is incredibly trivial and
straightforward to set up?

While it’s enjoyable to tinker with various open source
projects and play at integration with them, invest the time up
front to use these features as provided by your application
server. Yes, it’s a lot less sexy; yes, it’s a lot more boring.
However, it will save time in both the short and long term,
reduce your maintenance, and eliminate the “keeping up
with the Jones’” aspect of tracking third-party sources. J2EE
mandates many of these services, including but not limited
to transaction management and connection pooling.

8. Petstore is a reference implementation.
Incredibly, many people use Petstore to “prove” that J2EE

is overly complex and awkward. Petstore is not a reference
implementation; it spends a lot of effort utilizing every
approach and API possible. Taken as a whole, it’s a collection
of blueprints artificially packaged in one solution. Only a
madman would use all the blueprints when developing his
own app. Simply pick a few that make sense to you and use
those, keeping in mind the project’s requirements.

Sun seems to have realized the faults with Petstore and
has probably come to regret the early hacked-together ver-
sions. The new Adventure Builder blueprints application
seems closer to a “real-world” solution in terms of imple-
mentation, I’m told. If you really want a Petstore kind of
example, look beyond Sun’s to the myriad of implementa-
tions used to demo various frameworks and tools. With very
few exceptions, they’re generally better written and make a
lot more sense.

9. J2EE is useless without extra frameworks.
The first thing that most people do before embarking on

any application, of any size or scope, is to try to use the
chance to utilize any number of popular frameworks. In
these days of framework mass hysteria, “naked” J2EE is per-
ceived as being bereft of all functionality and quite useless
out of the box.

Not so! While many larger applications would see a huge
benefit in committing to a particular framework (be it open
source or otherwise), smaller ones often do not merit the
extra learning curve, maintenance cost, and configuration
nightmares associated with many of these frameworks. Be
flexible, consider your needs, and pick an intelligent solution
that fits the problem at hand. If any of these frameworks was
a true “one size fits all” solution, it’d be part of the spec.

This in fact does seem to have happened, with the intro-
duction of JavaServer Faces. Unfortunately while well inten-
tioned, the specification is far from adequate in its current
incarnation. I am told that the expert group is aware of these
issues and is hard at work addressing them.

Conclusion
What’s our take-home lesson? Put succinctly, take every-

thing you hear with a grain of salt! It’s often easy to get
caught up in the hype (both positive and negative), but to
date, nobody has come up with a solution that absolves us
developers from having to think, consider, and apply our
core skill to all our decisions: problem-solving in innovative
and efficient ways.

J2EE is an evolving spec, albeit at a slower pace than
some would like. It has areas it will mature greatly in, and
despite many assertions to the contrary, it’s a mature plat-
form backed by a strong specification and huge industry
commitment. Investing in it might no longer seem to be
glamorous or innovative, but that’s the sign of a mature and
well-established specification. The technologists might have
moved on, but for the rest of us enterprise application devel-
opers, we have a powerful and compelling tool in our arsenal
that’s useful far more often than not.

IN THE ENTERPRISE
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

Could it be that people don’t know that every J2EE container is
required to provide data sources that can be looked up?”“

20 June 2004 www.SYS-CON.com/JDJ

s Apache Ant is applied to

increasingly difficult tasks,

its users are creating more

complex and less legible build files. This

is due, in part, to the limited tools for

decomposition and code reuse within

previous versions of Ant.

The AntCall and Ant tasks can be
used to help manage complex build files,
but they have a high overhead cost and
are not always legible. Without stronger
features designed for decomposition and
code reuse, it’s difficult to manage the
increasing length and complexity of Ant
build files, and attempts to do so can
obscure rather than clarify intent.

Fortunately, Apache Ant version 1.6
has several features that can help you
manage the complexity of your builds
and make the files more natural, legi-
ble, and faster. In particular, Macro
Definition, Preset Definition, and
Importation are powerful tools that can
help reduce complexity.

Macro Definition
When generalizing functionality in Ant,

we have historically been faced with a set of
options, each flawed. You can duplicate the
code (copy and paste), which creates main-
tenance issues and other problems.
Alternatively, you can use the Ant and
AntCall tasks, which allow you to run Ant
targets in a parameterized way. Finally, you
can create a custom Ant task, which is
extremely flexible but time-consuming and
complicated, when the desired functionali-
ty already exists as a set of Ant tags.

Macro definition in Ant 1.6 offers to
change all that by allowing the Ant user

to create flexible macros that can be
invoked within the Ant file without
incurring the development overhead of
a custom Ant task or the runtime over-
head of an AntCall invocation.

If we compare the code in Listings 1
and 2, we can see that although the
macro is a little less compact in this
simple example, it’s much more legible
and will significantly reduce the over-
head of code reuse by avoiding the
reloading associated with an AntCall.

Macros seem even more powerful
when you consider the ability to para-
meterize your macro with entire blocks
of new code using the element tag, as
shown in Listing 3.

Preset Definition
Preset definition is a simpler, lighter,

more compact form of a macro definition
– the ability to customize existing tasks for
your own purposes; it allows you to set
default values or configuration settings
for an existing task under a new name.

For instance, if you chose a more
advanced logging structure for your
build file, you might find it convenient
to have an echo task customized to
write a warning to your log file, as
demonstrated in the following code:

1 <presetdef name=”warn”>

2 <echo file=”build.log” level=”warning” />

3 </presetdef>

4

5 <warn>Cannot locate configuration file:

local.properties</warn>

By allowing you to customize and
rename the task, Ant gives you the power
to reuse common functionality and make
the build files even easier to understand.
These are important elements as everyday
use of Ant becomes increasingly complex.

Listing 4 demonstrates how you
might invoke a series of SQL state-

ments in Ant 1.5.
By way of comparison, Listing 5

demonstrates the marked improve-
ments made by using Ant 1.6’s preset
definitions.

This is already a vast improvement.
The preset definition is slightly more com-
plex, but the overall legibility is markedly
improved, and there is far less duplica-
tion. Further, the Import Task, discussed
in the next section, could allow you to
move the preset definition to another file
that defines presets and macros.

Import Task
Ant 1.6 comes with an import task

for composing one build file from com-
ponent pieces. Although it was already
possible to do some of this using XML
entity includes, the import task is in a lot
of ways more powerful and less arcane.

In a lot of cases the import task will
be used simply, such as:

<import file="project-macros.xml" />

It does have more complex uses,
however. The new import task allows
you to override Ant targets in an almost
polymorphic manner. Imagine you had
this simple build file as shown below:

1 <project name="SuperClass"

default="hello">

2 <target name="hello" depends="sponsor">

3 <echo message="Hello, World!" />

4 </target>

5 <target name="sponsor" />

An 'abstract' target -->

6 </project>

If you wished to make use of this pre-
viously developed functionality, you could
use the new import task to override or
alter the functionality in a way that would
be very familiar to object-oriented devel-
opers. This is demonstrated in Listing 6.

by Geoffrey Wiseman

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

A

Anticipate and protect every possible security vulnerabilityAnticipate and protect every possible security vulnerability

FEATURE

Managing Build Complexity
with Apache Ant 1.6

Managing Build Complexity
with Apache Ant 1.6

Geoffrey Wiseman is a software
consultant, one of Ingenura Inc.’s
founders, and a long-time user of

Apache Ant.

geoffrey.wiseman@ingenura.com

Canôt someone develop a single sourcing authoring tool that saves time, allows
for collaboration and reduces headaches for developers and technical writers?

I need a single-source
authoring tool that
saves me time and
reduces headaches...

>

Í GST]VMKLX 6448 VEWGEP WSJX[EVI2 EPP FVERH ERH TVSHYGX REQIW EVI XVEHIQEVOW SJ XLIMV VIWTIGXMZI GSQTERMIW

API Documentation

> Produce documentation using terms and vocabulary common to writers and developers

> Create documentation automatically by scanning Java source code and Microsoft
 Windows COM Objects.

> Automatically generate signatures of API properties and methods, return values,
 parameters, and when available, error codes

> Re-scan developer code to merge changes into your Veredus project quickly and easily,
 keeping documentation accurate and up-to-date

> Generate documentation in a variety of formats from your Veredus project such as
 JavaHelp and PDF

Single Sourcing

> A single product that creates content once for multiple deliverables in content and format

> Veredus saves you time, reduces headaches and creates W3C compliant output for customized
 printing, Web portals and a variety of Help formats.

Help Authoring

> Quickly create professional help systems and user manuals from a single source.

> Change your output target without painful conversion processes.

> Produce output in any format: Java Help, Oracle Help, HTML Help, Apple Help,
 Microsoft Help, WinHelp and others.

> Translate the same information into different languages via XLIFF and a localization partner

Finally someone has!
Introducing VeredusTM 2.0

Single Sourcing Made Easy

Download a FREE trial of Rascal Software Veredus 2.0

Visit www.rascalsoftware.com/jdj or call 206-624-7300

A single fully
integrated editor
for all outputs

Output is as easy as choosing
the output medium, style and

where to store the output
to create Java Help

22 June 2004 www.SYS-CON.com/JDJ

As Ant build files grow and evolve,
these kinds of capabilities will give
Ant the power of composition, to
keep modules of Ant code simple
enough to understand while allowing
increased overall complexity.

XML Namespaces
While macro definition and

preset definition allow you to make
better use of existing Ant functionali-
ty, there are times when you will want
to add entirely new functionality to
Ant by either developing a custom
task or making use of third-party
tasks.

Because all Ant tasks and types
have operated in a common name-
space, there has always been the
potential for conflict between Ant
tasks libraries, causing unnecessary
integration issues. The following code
demonstrates how Apache Ant 1.6
reduces this through the use of XML
namespaces, allowing two similarly
named tasks to coexist simply by
allowing each library the use of its
own namespace through the new URI
attribute of the typedef task.

1 <project name=”NS-No-Conflict”

xmlns:ingenura=”http://alpha.org”

xmlns:beta=”http://beta.org”>

2 <typedef resource=”org/alpha/tasks.prop

erties”

uri=”http://alpha.org” />

3 <typedef resource=”org/beta/tasks.proper

ties”

uri=”http://beta.org” />

4 <alpha:task />

5 <beta:task /> <!-- same task name -->

6 </project>

With the use of the new Antlib task,
libraries can be bundled in such a way
that they are imported automatically
when the namespace is defined using the
antlib-structured URI, as shown below:

1 <project name=”NS-Antlib”

xmlns:ingenura=”antlib:com.ingenura.

tasks”>

2 <ingenura:task>

3 See how easy this is?

4 </ingenura:task>

5 </project>

Looking Forward
Ant is being applied to increasingly

difficult tasks that call for increasingly
complicated build files. Ant 1.6 provides
several new and better ways to manage
this complexity, making Ant files faster
and more powerful, compact, and legible.

If you’ve been using Apache Ant,
you’ll appreciate many of the new fea-
tures of Ant 1.6 that make it easy to use
and enhance its power. If you haven’t,
perhaps this is a good time to take anoth-
er look at Ant and what it can do for you.

Additional Resources
For more information, consider the

following resources:
• More information about the new fea-

tures, including those found in the
article as well as XML namespaces,
Antlib, SSH, SCP, SubAnt and
DefaultExcludes, can be found at
http://nagoya.apache.org/wiki/apac
hewiki.cgi?NewAntFeaturesInDetail.

• Specific information about new and
existing tasks can be found in the Ant
Manual at http://ant.apache.
org/manual/.

• For general information about Ant,
see the Apache Ant Web site at
http://ant.apache.org.

Listing 1: Using antcall
1 <target name=”build.general”>
2 <echo message=”Building target ${build.target}” />
3 </target>
4
5 <target name=”build.dev”>
6 <antcall target=”build.general”>
7 <param name=”build.target” value=”dev” />
8 </antcall>
9 </target>

Listing 2: Using macrodef
1 <macrodef name="mybuild">
2 <attribute name="buildtarget" />
3 <sequential>
4 <echo message="Building target '@{buildtarget}'" />
5 </sequential>
6 </macrodef>
7
8 <target name="build.dev">
9 <mybuild buildTarget="dev" />
10 </target>

Listing 3: Using the element tag
1 <macrodef name="recordTask">
2 <attribute name="level" default="info" />
3 <attribute name="file" />
4 <element name="recordabletask" optional="no" />
5 <sequential>
6 <record name="@{file}" action="start"

append="yes" loglevel="@{level}" />
7 <recordabletask />
8 <record name="@{file}" action="stop" />
9 </sequential>
10 </macrodef>
11
12 <target name="test">
13 <recordTask file="record.log">
14 <recordabletask>
<echo message="in log" />
</recordabletask>
15 </recordTask>
16 <echo message="out of log" />
17 </target>

Listing 4: A series of SQL statements
1 <sql driver="org.hsqldb.jdbcDriver"

sql="jdbc:hsqldb:\\ansible" userid="sa" password=""

src=”build/db/createUsers.sql”>
2 <classpath>
3 <fileset dir="source/libraries" includes="hsqldb.jar" />
4 </classpath>
5 </sql>
6 <sql driver="org.hsqldb.jdbcDriver"

sql="jdbc:hsqldb:\\ansible" userid="admin" password="admin"
src=”build/db/dropSa.sql”>

7 <classpath>
8 <fileset dir="source/libraries" includes="hsqldb.jar" />
9 </classpath>
10 </sql>
11 <sql driver="org.hsqldb.jdbcDriver"

sql="jdbc:hsqldb:\\ansible" userid="admin" password="admin"
src=”build/db/createSchema.sql”>

12 <classpath>
13 <fileset dir="source/libraries" includes="hsqldb.jar" />
14 </classpath>
15 </sql>

Listing 5: Using presets to reuse SQL calls
1 <presetdef name="runsql">
2 <sql driver="org.hsqldb.jdbcDriver"

sql="jdbc:hsqldb:\\ansible"
userid="ansibleAdmin" password="!ansibleAdmin">

3 <classpath>
4 <fileset dir="source/libraries" includes="hsqldb.jar" />
5 </classpath>
6 </sql>
7 </presetdef>
8
9 <runsql userid="sa" password="" src="build/db/createUsers.sql" />
10 <runsql src="build/db/dropSa.sql" />
11 <runsql src="build/db/createSchema.sql" />

Listing 6: Using an import task
1 <project name="Intro-Import-Subclass" default="hello">
2 <import file="build-super.xml" />
3 <target name="hello" depends="SuperClass.hello">
4 <echo message="Powered by Ant 1.6" />
5 </target>
6 <target name="sponsor">
7 <echo message=”Brought to you by JDJ.” />
8 </target>
9 </project>

FEATURE
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

24 June 2004 www.SYS-CON.com/JDJ

e know from the theory of
relativity that the passage of
time is relative to the per-
ceiver. This is true of history

as well. Sometimes history moves fast,
e.g., during World War II and when
communism was crumbling in 1989.
Sometimes history moves slowly, as in
the Cold War and the period between
1991–2001.

The same can be said of innova-
tion. Sometimes a lot of innovation
happens all at once as in the boom
years of the Web from 1998–2001, and
during the early days of Java –
1994–1995. Sometimes the pace of
innovation slows to a crawl and other
forces, principally economic, take
precedence.

The J2EE platform is in the latter
state at the moment. Much of the
innovation has already been done,
and most of the work being done now
is “fit and finish” work. The net effect
of this is that the application server
vendors are innovating at a furious
pace.

History of the Development
of the Platform

When the team at Sun was planning
the original J2EE platform, it was clear
that there were several stages in the
process of developing a J2EE market,
and that the industry had to be suc-
cessful in order for J2EE to be success-
ful. Furthermore, all the stages had to
be complete in order for a fully func-
tioning market.

First, the technology had to be
adopted by large enterprise software
companies such as IBM, BEA, and
Oracle. JavaSoft’s unique product
development methodology con-
tributed to making this successful. The
methodology, the precursor of the Java
Community Process, was to include
the “customer” – the application serv-
er vendors – in the development
process. All of the vendors participat-
ed equally.

Second, the tools vendors needed to
be included. It’s not sufficient to have

infrastructure available. It must be easy
for developers to write code on top of
the platform and do it easily, and there
must be a vibrant commercial develop-
ment tools market in order to accom-
plish this.

Third, there must be a market for
software components so that it’s possi-
ble to assemble applications quickly
using commercial development tools.
Interestingly, this market did not devel-
op as originally planned. For example,
there are less than 30 EJB commercial
components found on Component-
Source, a major site for selling software
componentry.

Fourth, there must be a market for
packaged applications, and these soft-
ware packages could not have been
written without the application servers,
tools, or components available in the
marketplace.

Finally, in order to build a complete
ecosystem, a market for systems inte-
grators must exist. In any technology
market there must be people that
companies can turn to in order to
integrate the packaged software men-
tioned earlier. Once a need for this
kind of integration is established, sys-
tems integrators become successful

and then a complete ecosystem has
been established.

The key point of this model is
that it is linear. Each stage must reach
a certain level of success for any of
the next stages to succeed. At this
point in history, it’s safe to say that
J2EE has a fully completed ecosystem,
since all stages seem to be relatively
successful. But there is one stage that
has severely limited the further
growth of the J2EE market. While
there are successful tools in the mar-
ketplace like Eclipse and JBuilder, on
the balance it is still very difficult to
build, deploy, and manage J2EE appli-
cations.

Fragmentation
This is further compounded by the

fact that the major tool vendors seem
to be heading in divergent directions.
Both IBM and BEA are doing cred-
itable jobs of improving the develop-
ment process. However, they appear
to be doing it in radically different
fashions. IBM, for its part, has devel-
oped a popular open framework with
Eclipse. Their commercial product,
euphoniously named WebSphere
Application Developer (WSAD), has
extended Eclipse in many interesting
ways, and seems for the most part to
be hewing closely to standards. WSAD
is a powerful, flexible tool, though all
this power and the conceptual bag-
gage that comes with it can be over-
whelming.

From the vantage point of usabili-
ty, BEA has done a great job of making
WebLogic Workshop into a first class
IDE in a mature market. It’s important
not to underestimate what they have
done. Their move in the space is akin
to someone creating a new Detroit car
company and succeeding. Workshop
is essentially the Saturn of the devel-
opment world.

BEA has always been an innovative
company. In the past they have often
implemented many Java features
before the ink on the specifications
was dry. They also have innovations

The Theory of Innovation
Turning J2EE into J2EE-easy with better tools and JSRs

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

VIEWPOINT

by Bill Roth &
Reza Behforooz

W

Reza Behforooz is an engineering
manager at E.piphany and also
serves on the Expert Group for

EJB 3.0. He has over seven years
of server engineering experi-

ence, mostly in J2EE. He holds a
BSCS from Cornell University and
a MSCS from Stanford University.

reza@cs.stanford.edu

Bill Roth is technical evangelist
at E.piphany, a member of the

JDJ editorial board, and Java edi-
tor for LinuxWorld Magazine.

br@billroth.net

26 June 2004 www.SYS-CON.com/JDJ

of their own, which they’ve included
in Workshop. Some of these innova-
tions, especially the way they
annotate code in the IDE, create code
that is project-incompatible with any
other tool, something I
am sure BEA has considered. This
is problematic, since a recent devel-
oper survey has shown that develop-
ers use on average at least two IDEs.
For application developers, this
makes our cross-platform and cross-
application server development hard-
er and lengthens our development
cycles, something we would clearly
like to avoid.

Current Application
Development Problems

There are other issues with devel-
oping J2EE applications. Most of
these problems stem from the gap
between the various J2EE compo-
nents and the actual problems an
application developer is trying to
solve. Many components of J2EE are
low-level APIs that, although they
provide a great framework for build-
ing applications, still lack the high-

level nature and ease of use needed to
free application developers from
building infrastructure. Tools can
bridge this gap and make J2EE easier
to use. A good tool should make it
easy for you to do simple things and
still have the flexibility to accomplish
difficult tasks. Two areas that contin-
ue to exemplify some of these diffi-
culties are building Web-based UI and
system management.

Most applications currently pro-
vide a Web-based UI; however, such
projects still involve employing J2EE
experts who are familiar with several
key APIs. Though JSP, Servlet, and Tag
libraries, and some of the new JSRs
provide a powerful framework, a new
J2EE developer is still overwhelmed by
the difficulty of building a page that
shows some data. This problem is
obvious if you compare the difficulty
of building a J2EE-based UI page to
the ease of building a similar page in
Visual Basic or PowerBuilder. There
are two main reasons for this difficul-
ty. First, the current APIs are too low

level and require all projects to rein-
vent the wheel and build the most
basic elements of a UI framework, for
example, component-based widgets
or a standard navigation paradigm
(Struts is designed to partly solve
these problems). The second reason
for the difficulty is the lack of tools
that hide application developers from
all the details of the APIs. For exam-
ple, nearly all business applications
require a UI for listing, searching,
viewing, and editing a business entity
that is often stored in a relational
database. Ideally, building a simple
application that performs these tasks
should be fully automated with a
WYSIWYG tool; in fact, the tool should
also generate the necessary artifacts
for data access (i.e., an EJB entity
bean). Most applications often have at
least several business entities, thus
exacerbating the problem of building
and maintaining such an application.
Without the tools, the application
developer is either forced to quickly
write JSPs for each of these pages,
which results in maintenance
headaches, or to spend a significant

amount of time in building a frame-
work to provide tools and a higher
level of abstraction over J2EE. The lat-
ter approach is used in most projects
in which a few developers are tasked
to build an internal framework to ease
the application development by vari-
ous methods such as code generation.
These problems are not restricted to
UI. As a result, most application ven-
dors have a team of developers who
build an infrastructure, often called a
platform, and the necessary tools on
top of J2EE to enable application
developers to do just that – to develop
applications.

Another problem area for applica-
tions is system management. This sit-
uation is analogous to the problems
with UI. JMX has been adopted by
almost all application servers as the
standard for system management.
However, there are no standards on
the ontology of MBeans that an appli-
cation server uses. Each vendor
defines its MBeans with the desired
attributes. As a result, system man-

agement across application servers is
nearly impossible. Furthermore, there
is no integration between each of the
core J2EE components and JMX. For
example, there is nothing in J2EE on
how JMS destinations should be man-
aged at runtime. Without this, JMX
and JMS are completely decoupled
and thus each application server ven-
dor builds its own set of MBeans and
clustering functionality for JMS.
Wouldn’t it be better to define the
common JMX MBeans for JMS desti-
nations to enable standard tools for
system management?

Suggestions for Improvement
of the Platform

From the current discussion, it’s
clear that several things can be done
to make it possible to build better
tools for J2EE. Given the current
maturity of J2EE, it’s important for
new JSRs to try to move up and pro-
vide higher-level value-add features
instead of the current trend of moving
horizontally into new areas. We don’t
need new low-level APIs that try to
tackle new problems as much as we

need to simplify J2EE, to better inte-
grate its components (e.g., the
JMS/JMX example above), and to ulti-
mately provide a higher level of
abstraction and standards to enable
vendors to develop consistent and
application server–neutral tools that
are easy to use. The new EJB 3.0 JSR,
for example, is mainly focused on
these goals. Though the specification
will not define an actual tool, the
expert group is focused on ease-of-
use features that will ultimately allow
better tools to be developed in order
to improve the current experience of
EJB developers.

Conclusion
J2EE development is now at a cru-

cial juncture. For J2EE to truly live up
to its potential and reach a broader
audience, it must become easier to
use. While the feature set of core J2EE
is now evolving slowly, the pace of
innovation around the tools needs to
speed up in order to effectively com-
pete with .NET.

VIEWPOINT
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

A good tool should make it easy for you to do simple things
and still have the flexibility to accomplish difficult tasks”“

New Crystal Reports 10.
The best in business intelligence now offers the best in business reporting.
New Crystal Reports® 10 is a faster and simpler way for developers to integrate dynamic
data into applications and implement high-quality viewing, printing, and exporting. Learn
more about Crystal Reports 10 and Crystal Enterprise™ 10, and access technical and evaluation
resources at www.businessobjects.com/v10/047 or contact us directly at 1-800-877-2340.

99.9% of the world won’t find these
screen shots terribly exciting.
But if you’re in the other 0.1%,

yeehaw.
Visual Designer simplifies

data connectivity
Deliver diverse data formatting

options within your presentation layer

Access data natively, or via
ODBC, JDBC and OLE DB

Expedite .NET and
J2EE report integration
Design and integrate reports
from within popular IDEs

Flexible Java, .NET and COM SDKs support the
tight integration of report interactivity including:
group tree navigation, exporting, printing, and
drill down

{

Use Crystal Reports 10 with
your J2EE applications

New 100% Java reporting component. Deploy
reports across Unix, Linux and Windows

Extend Crystal Reports with Crystal Enterprise.
Get world-class web report publishing,

management, and scalability

}

{

28 June 2004 www.SYS-CON.com/JDJ

Web portal is an application that
aggregates multiple Web appli-
cations on a single Web page.
Popular examples of portals are

My Yahoo (my.yahoo.com) and My MSN
(my.msn.com). These portals allow users
to aggregate multiple Web applications
(like Stock Quote, News, and Weather). In
addition these portals allow users to per-
sonalize and customize the presentation
and content of the individual Web appli-
cation. This means users may do both:
change the color, style, and layout of the
page, and specify the content – list of
stocks in a Stock Quote application and
categories of news in a News application.

The Java community has created a
standard for developing portal applica-
tions; it’s called the Portlet API. The indi-
vidual Web applications described above
are called portlets. In August 2003, Portlet
API specification, JSR 168 (http://jcp.org/
en/jsr/detail?id=168), completed the pub-
lic review process. The goal of the specifi-
cation effort is to “enable interoperability
between portlets and portals by defining
a set of APIs for Portal computing
addressing the areas of aggregation, per-
sonalization, presentation and security.”
This allows portlets to be developed once
and deployed on any Web portal that is
compliant with the portlet standard.

This article will describe how to devel-
op JSP portlet applications using
Jetspeed. Jetspeed (http://jakarta.apache.
org/jetspeed) is an open source project
from the Apache Foundation that pro-
vides tools to build Web portal applica-
tions. Its current release, Jetspeed 1.4,
provides a portlet-based implementation.
Jetspeed 2.0 is currently under develop-
ment for release in early 2004. This will be
compliant with JSR 168 portlet standards
and built on Apache’s Pluto, which is a
reference implementation of JSR 168
(http://jakarta.apache.org/pluto/).

This article demonstrates a method to
develop JSP portlets with a declarative
specification of server-side logic instead
of server-side programming. This is in
contrast to current methods of develop-
ing JSP portlets that involve a significant
amount of server-side programming.

The Jetspeed application is available as
a WAR file and may be downloaded from
http://jakarta.apache.org/jetspeed/. The
WAR file may be deployed in Tomcat 4.1,
WebLogic, WebSphere, or other J2EE
application servers. The tutorial at http://
jakarta.apache.org/jetspeed/tutorial/ is a
good guide to getting started. It explains
how to aggregate, personalize, customize,
develop, and deploy new portlets, there-
fore it will not be repeated here. This arti-
cle focuses on developing portlets using
JSP. To illustrate how JSP applications are
developed in Jetspeed, we’ll use a simple
User Profile example (this will be referred
to as Portlet 1 in Figure 1), with the fol-
lowing functionalities:
1. When a Web page with the User

Profile portlet is loaded on the
browser, the logged in user’s address
and phone number are displayed.

2. User changes the information and
clicks on Update. The changed val-
ues are updated in the database.

3. The returned page displays the
updated information.

Standard Method for a JSP Portlet
An implementation of the sample

application in Jetspeed, using the tra-
ditional method, will consist of the fol-
lowing files (see Listings 1–3). (Listings
5–7 can be downloaded from www.sys-
con.com/java/sourcec.cfm.)
• profile.jsp: JSPPortlet requires that

the name of the submit form ele-
ment have this prefix: “eventSub-
mit_”. The name after this prefix, for
example, “doUpdate,” is the method
that is called in profileJSPAction-
Class.

• profileJSPActionClass.java: The
action class must contain two meth-
ods – buildNormalContext and a
method called from the JSP page.
The buildNormalContext() method is
the last method called every time the
portlet is displayed or refreshed. If
ProfilePortlet is submitted, Jetspeed
calls doUpdate() first and then calls
buildNormalContext().

• profile.xreg (the Jetspeed registry file):
An XML file for registering a portlet, it
specifies the type of portlet, JSPPortlet;
the action class, indentJSPPortlet-
Action, that will handle the submit
event and deliver content to Jetspeed
for rendering; and the startup param-
eters for the portlet.

Figure 2 shows the flow logic for four
conditions in the action class:
• When the portlet application is first

loaded in a Web browser
• When the portlet application issues a

submit request that involves a data-
base update

• When the portlet application issues a

Developing Web Portals
in Jetspeed Using JSP
Simplify the process

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

PORTLET APPLICATIONS

by Pramod Jain
and Satya Komatineni

A

Pramod Jain is president of
Innovative Decision

Technologies, Inc. (INDENT)
(www.indent.org).

pramod@indent.org

Satya Komatineni is
chief technology officer of

Innovative Decision
Technologies, Inc.

satya@indent.org

Figure 1 Layout of portlets in a pane in Jetspeed portal

Jetspeed portal running on web browser

Portlet 1 Portlet 2

Portlet 3 Portlet 4

Pane 1 Pane 2

Figure 2 Flow logic

First load Submit, with update Submit, with select
1. buildNormalContext()
1.1 doSelect()
1.2 doSelectInAspire()

1. doSubmit()
1.1 doUpdate()
1.2 doSelectInAspire()
2. buildNormalContext()

1. doSubmit()
2. buildNormalContext()
2.1 doSelect()
2.2 doSelectInAspire()Refresh

1. buildNormalContext()
2. Deliver cached content

Finally there’s a high-performance database that loves Java just as
much as you do: Berkeley DB Java Edition (JE). Brought to you by the
makers of the ubiquitous Berkeley DB, Berkeley DB JE has been written
entirely in Java from the ground up and is tailor-made for today’s
demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application,
with no runtime data translation or mapping required. Plus Berkeley DB JE has been specifically designed to
handle highly concurrent transactions, comfortably managing gigabytes of data. And because it’s built in your
language of choice, your organization enjoys shorter development cycles and accelerated time-to-market.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB JE today at www.sleepycat.com/bdbje. Register now, and you’ll also receive a 15%
discount on a commercial license purchased before November 30, 2004.

Berkeley DB Java Edition
Download at www.sleepycat.com/bdbje

Introducing a high-performance database that’s 100% Java.

©
2

0
0

4
 S

L
E

E
P

Y
C

A
T

 S
O

F
T

W
A

R
E

 I
N

C
.

A
L

L
 R

IG
H

T
S

 R
E

S
E

R
V

E
D

.

Javavavoom!

30 June 2004 www.SYS-CON.com/JDJ

submit request that involves getting
data

• When the page containing the portlet
application is refreshed or another
portlet application on the same page
is submitted

A Jetspeed container typically contains
several Portlet classes – JSPPortlet,
RSSPortlet, IframePortlet, VelocityPortlet,
etc. A JSPPortlet may be servicing several
portlet applications – P1, P2, … Pn. When
a Portlet is submitted from a browser, the
Jetspeed container determines which
portlet class will process the request. The
portlet class then hands over the request
to the action class of the appropriate
application. For each portlet application,
developers write an action class and sev-
eral methods in the action class. The
action class typically calls a business com-
ponent or database to satisfy the request.
The data returned by the business compo-
nent is used to render the return JSP page
of the portlet application that was submit-
ted. Other portlet applications on the
same page are returned from the cache.

In the traditional method of develop-
ing JSP portlets (see Figure 3), developers
write action classes and methods that
are request specific. For example, if
Portlet 1 has five JSPs and each has two

different submits, in a worst case sce-
nario a developer would write 10 meth-
ods in Portlet 1’s action class. Each port-
let is typically configured to be processed
by a different action class. Extending this
analysis to four portlets with each requir-
ing 10 methods would suggest that a
developer would write 40 methods.

The issue with this approach is that for
any reasonably sized Web portal, the col-
lection of action classes and methods
proliferates and becomes unmanageable.

Declarative Method for
Creating a JSP Portlet

Faced with this problem, we have
developed a broker class that provides a
single action class, IndentJSPAction-
Class, and a single action method,
doSubmit(), to which all JSP pages are
submitted (see Figure 4).

For brevity the broker class will be illus-
trated with an example in which action is
limited to a database transaction. Two
parameters are sent to the action class:
actionType and actionName. actionType
is “select” or “update” and actionName is
the name of a request, whose purpose
will become apparent soon. The broker
action class calls Aspire, which is a declar-
ative middle tier (www.indent.org/aspire.
htm). Aspire is an open source J2EE pro-

gram developed by coauthor Satya
Komatineni. To download Aspire’s JAR file
and the source code of the examples go to
www.indent.org/jetspeedDownload.htm.

In Figure 4 JSPPortlet forwards the
request to a single class and single
method in the broker. Action Class calls
Aspire with a parameter aspireURL.
Aspire reads the declarative definition for
aspireURL and transacts with the data-
base. The retrieved data is transformed
to a hierarchical data set (HDS). The out-
going JSP page then uses HDS to create
the display.

The broker is employed in simplifying
the action class. The role of the action
class is twofold. In the case where
“actionType=select”, the action class is
responsible for retrieving data from a
database as an HDS. The outbound JSP
uses the HDS for display in the browser.

In the case where “actionType=
update”, the action class is responsible
for modifying content in a database.
Once the update takes place, the user
can be redirected to an appropriate
page. Separating the role of the action
class into these two categories offers
clarity in the design of portlets.

The broker class has prebuilt parts that
can construct an HDS declaratively from
a set of SQL statements. This means the
action class can make use of these defini-
tions to automatically generate the neces-
sary data for a Web page. In case of an
update, the broker class provides a declar-
ative update pipeline of parts where mul-
tiple update SQLs or stored procedures
are executed against a database transac-
tionally. By coupling these two declarative
facilities, a generic action class for the
JSPPortlet has been developed that
streamlines the process for developing
Jetspeed portlet pages rapidly. For more
information about HDS and Aspire see
“Using Hierarchical Data Sets with Aspire
and Tomcat,” www.onjava.com/pub/a/
onjava/2003/03/05/hds. html.

An implementation of the sample
application in Jetspeed contains the fol-
lowing files, shown in Listings 4–7.
• Aprofile.jsp: Uses Aspire and hierar-

chical datasets to get data for display.
A hierarchical dataset is generated by
Aspire and inserted into rundata in
the action class. There are two meth-
ods, getValue(column name) that
returns data for a column and
getChild(loop name) that returns a
hierarchical dataset containing mul-
tiple rows of data. This JSP page dis-
plays all the past phone numbers
and addresses of this user and allows
the most recent to be edited.

• Java source for the Action class: Uses
Aspire, a declarative middle tier for all

Figure 3 Schematic of the traditional method of JSP portlets in Jetspeed

Jetspeed portal running on web browser

Portlet 1

Portlet 3 Portlet 4

Pane 1 Pane 2

Portlets in a web browser

Distributor

Portlet

JSP

P1
P2
P3

Pn

JSP
pages

Action

Action

Action
Class

Action
Class

DB & other
Business

Components

Portlet 2

Jetspeed Container

Page
Aggregator

Figure 4 Schematic of components of Jetspeed and Broker

Distributor

Portlet

JSP

P1
P2
P3

Pn

JSP
pages

Action
Class DB

Page
Aggregator

Jetspeed Container

Method()

Aspire

Declarative
Definitions

hds

Broker

PORTLET APPLICATIONS
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

--

32 June 2004 www.SYS-CON.com/JDJ

PORTLET APPLICATIONS

database transactions; see Figure 2 for
the flow logic.

• profile.xreg: Three additional param-
eters – aspireAction, aspireURL, and
appName – have been added com-
pared to the standard version. Values
assigned to these parameters are used
in buildNormalContext() to initialize
the portlet and get the initial set of
data from the database through
Aspire.

• Aspire properties file: The database
calls are declaratively specified in this
file. AspireURLs illustrated here are
“SaveAddress” and “addressURL.”
dprDB is an alias for a database. In
SaveAddress, the first part of request
gets user_id, and the second part exe-
cutes an insert. In addressURL, there
are three parts to the request: the first
two return a single row and the third
returns multiple rows.

Summary
A broker class is presented as

a means of simplifying the process
of creating JSP portlets. The cus-
tom Java coding–based approach
in the action class is replaced with a
declarative approach in which data access
and update methods are specified in exter-
nal properties files. This greatly simplifies
the development and maintenance of
portlets.

Listing 1
<%@ taglib uri='/WEB-INF/templates/jsp/tld/template.tld'

prefix='jetspeed' %>
…
<%try
{ // rundata contains session data and data from action
class
RunData rundata = (RunData)request.getAttribute("rundata");
final String userid = rundata.getUser().getUserName();
String jspeid = (String) request.getAttribute("js_peid");
String address = (String) request.getAttribute("address");

<!—action URL is provided by the taglibs of Jetspeed -->
<form name="addressFrm" method="post"
action="<jetspeed:dynamicUri/>">
<INPUT TYPE="hidden" NAME="js_peid" VALUE="<%=jspeid%>">
<textarea name="address"><%= address %></textarea>
<!—Submit button name must start with “eventSubmit_” -->
<input type="submit" name="eventSubmit_doUpdate"

value="Submit">
</form>
<% }
catch (Exception e)
{
AppObjects.log("Error:error in address.jsp page",e);
return;

}%>

Listing 2
package com.indent.actions.portlets;

…

public class indentJSPPortletAction extends JspPortletAction
{

protected void buildNormalContext(Portlet portlet, RunData
rundata) {
}

public void doUpdate(RunData rundata,Portlet portlet)
{

Hashtable args = new Hashtable();
try
{

String address =
rundata.getParameters().getString("address");

Class.forName("org.gjt.mm.mysql.Driver");
Connection con = DriverManager.getConnection

("jdbc:mysql://localhost/document","root","indent");
Statement stmt=con.createStatement();
stmt.executeUpdate("insert into dummy (col1) VALUES

('address')");
rundata.getRequest().setAttribute("address",address);
stmt.close(); con.close();

}
catch(Exception e)
{

Log.error(e);
}

}
}

Listing 3
<?xml version="1.0" encoding="UTF-8"?>

<registry>
<portlet-entry name="Profile Demo App"

hidden="false" type="ref" parent="JSP" applica-
tion="false">

<meta-info>
<title>Profile Demo Portlet</title>
<description>Profile Demo Portlet</description>

</meta-info>

<classname>org.apache.jetspeed.portal.portlets.JspPortlet</c
lassname>

<parameter name="template" value="profileApp\pro-
file.jsp"
hidden="true" cachedOnName="true" cachedOnValue="true"/>

<parameter name="action"
value="portlets.indentJSPPortletAction"

hidden="true" cachedOnName="true"
cachedOnValue="true"/>

<media-type ref="html"/>
<url cachedOnURL="true"/>
<category group="Jetspeed">demo</category>
<category group="Jetspeed">jsp.demo</category>

</portlet-entry>
</registry>

Listing 4
<%@ taglib uri='/WEB-INF/templates/jsp/tld/template.tld'
prefix='jetspeed' %>
…
<%try
{
RunData rundata = (RunData)request.getAttribute("rundata");
final String userid = rundata.getUser().getUserName();
String jspeid = (String) request.getAttribute("js_peid");
String ckey=userid + jspeid;
boolean refresh_v=false;
String refresh = (String) request.getAttribute("appName");
if (refresh!=null && refresh.equals("profileApp"))

refresh_v = true;%>
<cache:cache key="<%=ckey%>" refresh='<%= refresh_v%>'

time="-1">
<%ihds hds = (ihds)request.getAttribute("PageData");%>

<FORM name="addressFrm" method="post" action="<jet-
speed:dynamicUri/>">
<INPUT TYPE="hidden" NAME="js_peid" VALUE="<%=jspeid%>">
<INPUT TYPE="hidden" NAME="appName" VALUE="profileApp">

<INPUT TYPE="hidden" NAME="aspireAction" VALUE="update">
<INPUT TYPE="hidden" NAME="aspireURL" VALUE="saveAddress">
<table>
<tr><td><textarea

name="address"><%=hds.getValue("address")%></textarea>
</td><td><input type="text" name="phone" value=

'<%=hds.getValue("phone")%>'> </td></tr>
<% ihds addressLoop= (ihds)hds.getChild("addressLoop");

if (addressLoop.isAtTheEnd()==true)AppObjects.log("Warn: No
data");
else {

for(addressLoop.moveToFirst();!addressLoop.isAtTheEnd();
addressLoop.moveToNext()) { %>
<tr><td><%=addressLoop.getValue("address") %>
</td><td><%= addressLoop.getValue("phone")%></td></tr>
<% } %>

<tr><td colspan="2"><input type="submit"
name="eventSubmit_doSubmit"> </td></tr></table>

<% } %>
</form>
</cache:cache>

<% } catch (Exception e){ AppObjects.log("Error:error in
jsppage",e); }%>

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

PRODUCTIVE DEVELOPERS • SUCCESSFUL PROJECTS • EMPOWERED USERS

WEB: http://www.ReportingEngines.com

EMAIL: sales@ReportingEngines.com
TEL: 913-851-2200 • 888-884-8665

FAX: 913-851-1390

Copyright © 2004 ReportingEngines (a division of Actuate Corporation). All rights reserved. Formula One is a registered trademark of Actuate Corporation.
Java and Java-based trademarks and logos are the trademarks or registered trademarks of Sun Microsystems Inc., in the United States and other countries. All other trademarks are property of their respective owners. All specifi cations subject to change without notice.

Formula One e.Spreadsheet Engine

excel enable your
java applications

formula one e.SPREADSHEET engine (100% PURE JAVA TOOL FOR BUILDING FINANCIAL APPLICATIONS)
Excel reporting. Excel-like data grids. Server-side calculation and business rules engine.

formula one e.report engine (Embed PDF, HTML, DHTML, and XML Reports in jsp and servlets)
Build reports against Java objects, JDBC, and XML. No report server to set up or maintain.

formula one e.report engine for weblogic workshop (access liquid data as a data source)
All the power of the regular e.Report Engine as a fully integrated BEA Workshop Extension.

BEA PORTAL REPORTING SOLUTIONS (POWERED BY THE FORMULA ONE E.REPORT ENGINE)
Visually build reports against BEA WebLogic Portal Server log files and BEA Liquid Data.

FREE
TRIALS

bUILD JAVA REPORTS
with no limits

Automate the building of Excel reports.
Access raw data in databases, XML fi les, and other data sources.
Perform calculations and formatting. Generate Excel reports
with formulas, merged cells, charts, outlining, and other rich
formatting upon delivery to users.

Use Excel fi les to govern calculations and
business rules in Java server environments.
Java developers no longer have to translate Excel formulas to
Java code. Spreadsheet experts (business analysts, actuaries,
fi nancial gurus, etc.) continue to own the core business logic
and calculations. Calculation errors and application downtime
is greatly reduced.

Embed Excel-compatible data grids in applets
and Java desktop applications.
Users can manipulate data as if they are using Excel, including
the use of Excel formulas and functions. After users make
changes in your embedded grid, they can save the fi le to their
desktop as an Excel fi le or commit the changes back to your
server where they can be saved to a database or passed to
another application.

API-driven, 100% Pure Java toolset for embedding
fi nancial functionality into projects and applications

34 June 2004 www.SYS-CON.com/JDJ

nyone who develops produc-
tion applications eventually
spends some time profiling.
JFluid is an experimental new

technology for profiling Java code. It
was developed at Sun Microsystems
Laboratories and can be a handy tool in
your profiling toolbox.

Your application should run fast and
not overconsume valuable resources
such as memory. For production appli-
cations it’s important to “scale well” by
running quickly and within a reasonable
memory footprint when the workload
increases. Profiling tools help identify
bottlenecks in your code – sections that
contribute the most to execution time
and resource consumption. Profiling can
reveal unanticipated facts about applica-
tion performance. In the world of Java
application development, all too often
performance assumptions tend to be
wrong.

Until now there have been two ways
to profile Java code. You can modify the
code by hand or use a profiling tool that
leverages the Java Virtual Machine
Profiler Interface (JVMPI). The first
approach (e.g., inserting calls to
System.currentTimeMillis()) is tedious
and error prone. The second approach
requires learning one of the many
JVMPI profiling tools. Some are open
source; others are commercial products.
JFluid provides a third alternative.

Features
First, an important note: currently

JFluid works only with its own Java
Virtual Machine (JVM). This JVM is a
slightly modified version of Sun’s
v1.4.2 HotSpot JVM and is fully com-
patible with the unmodified JVM. The
only difference is a small internal pro-
filing API. Replacing the standard JVM
with the JFluid JVM is easy – see the
“Installation” section of this article.

The JFluid tool is a Swing applica-
tion that is currently a bit rough around
the edges – hopefully it will improve
over time. The application to be profiled
can be started by the tool. Alternatively,

you can attach the tool to a JVM that is
already running. Attaching to a running
JVM is useful when you want to profile
applications that run in a container
such as a Web or application server. An
important JFluid feature is that no spe-
cial command-line settings are required
when starting the JVM to which you
eventually attach. Until the JFluid tool is
attached, the application runs at full
speed with no profiling overhead. Think
about the implication of that. It means
that applications can be profiled in
their normal deployed environment
without advance preparation and with-
out incurring any overhead when profil-
ing is not being done. In other words,
JFluid allows profiling to be turned on
and off at will.

Minimizing overhead is a cornerstone
of JFluid’s design. Its CPU profiling allows
you to profile a subset of the application’s
methods. By not profiling the rest of the
methods you can dramatically reduce
profiling overhead. To profile a group of
methods, first select one or more meth-
ods manually. JFluid treats each selected
method as the root of a “call graph”.
Starting at the root method JFluid deter-
mines which methods are called by it,
repeating the process recursively until
the entire call subgraph is identified.
Only the methods that belong to the call
subgraph are instrumented and profiled;
the rest of your code runs unchanged at
full speed. Method selections can be
changed arbitrarily while the program is
running. This allows you to perform a
“drill down” with decreasing overhead, or
to successively profile different code
areas for which there would be too much
overhead if profiled together. Tools that
allow only a selection of methods for pro-
filing by name or package are unable to
provide this functionality in such an
easy-to-use form.

JFluid also tracks memory alloca-
tions with an eye on minimizing over-
head. By default JFluid does not record
complete information on every object
allocation; instead it does statistical
sampling by keeping a counter for

each class. It decrements the class’s
counter when an object is allocated.
When the allocation counter reaches
zero, JFluid does detailed profiling and
resets the counter. Detailed profiling
of an allocation consists of capturing a
stack trace and monitoring whether
the object is still on the heap, in other
words the object’s liveness. By default
the counter is 10 so 10% of object allo-
cations are tracked. In production
applications, particularly server appli-
cations, the number of objects allocat-
ed is so high that the information that
is discarded is usually not significantly
different from what is retained. The
allocation counter can be decreased to
improve precision or increased to
reduce overhead.

For tracked allocations JFluid records
the age of each object, where “age”
means number of garbage collections
the object has survived. It also reports
the number of different ages for all
tracked allocations of a class; this is
called “surviving generations.” The sur-
viving generations value is useful for
detecting memory leaks caused by
objects that are constantly generated,
but only partially garbage collected. In
other words, the group of objects grows
steadily. “Steadily” is the key word: it is
not a group of objects that has been gen-
erated once within a short period of time
in the past and remains fixed since then.
Nor is it a group of objects that may grow
for quite some time, but then get collect-
ed at once. In both of those cases, the
number of different ages of objects with-
in a group would be small, no matter
how young or old the objects themselves
are. It is typically in a leaking object
group that the number of different ages
grows steadily.

Gregg Sporar is a software
developer who has been

using Java since 1998. He is
a staff engineer in the

services division of Sun
Microsystems and is a Sun
Certified Java programmer.

gregg.sporar@sun.com

JFluid: A New Way to
Profile Java Applications

LABS

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Reviewed by
Gregg Sporar

A 4150 Network Circle
Santa Clara, CA 95054
WWeebb:: http://research.sun.com
PPhhoonnee:: 800 555-9SUN

Sun Microsystems Laboratories

35June 2004www.SYS-CON.com/JDJ

JFluid can also tell you where in your code
an object was allocated. However, it does not
help answer the question of why an object has
not been garbage collected. In other words, no
display is provided to show which objects are
pointing to the suspected leaking object.
Sometimes just knowing where an object was
allocated is enough of a clue to help you figure
out why it has not been garbage collected. When
that is not enough, a heap graph would be help-
ful. We have yet to see what JFluid is going to
offer in this area.

In addition to the instrumentation of CPU
usage and heap allocations, JFluid provides
four monitors. These graphs show thread
count, current heap size and usage, time
spent doing garbage collection, and the count
of the number of different ages for all heap
objects. The count of the number of different
ages is the surviving generations value for the
entire heap.

Installation
All the necessary .zip files are on the JFluid

Web site. Support is included for SPARC
Solaris, x86 Solaris, Linux, and Windows.
Installation consists of two parts: replacing the
JVM and installing the tool.

To replace the JVM, download the binary
files (libjvm.so or jvm.dll, depending on your
platform) and put them in place of the corre-
sponding files in your standard JVM.
Alternatively, you can download a complete
JDK that has already been modified to support
JFluid.

To install the JFluid tool, unzip the file into
any directory. Edit the shell script or batch file
that’s used to start the JFluid tool so that your
JVM and JFluid directories are specified, and
you are ready to go.

Sample Program
To demonstrate JFluid I wrote a simple

prime number generator that uses the Sieve of
Eratosthenes. Its method accepts a single inte-
ger parameter and returns all prime numbers
less than or equal to that integer. (The source
code for this article can be downloaded from
www.sys-con.com/java/sourcec.cfm.) The
code is poorly written on purpose so that I can
demonstrate some of JFluid’s features. To test
JFluid’s ability to connect to a container, I also
wrote a poorly implemented servlet that uses
the prime number class; the servlet wastes an
atrocious amount of heap space. Finally, I cre-
ated a small .html form that invokes the
servlet.

I ran JFluid on both a SunBlade 2000 run-
ning Solaris 9 and a Pentium3-based PC run-
ning Windows 2000. All screenshots in this
article are from the PC, which is where I ran
the example profiling session.

Example Profiling Session
After modifying my JVM with the JFluid

files, I started the Tomcat servlet container.
After starting the JFluid tool I modified its set-

tings, which includes two different CLASS-
PATH values. The first is for the main applica-
tion class loader, the second for any other
class loader that gets used by your code. For
JFluid to be able to find and instrument class-
es of my servlet I had to specify the servlet’s
classes in the path for the other class loader
(see Figure 1). In the Instrumentation tab of
the settings dialog I turned on profiling of the
core Java classes, which is off by default to
reduce overhead.

To begin a profiling session I chose
Run>Attach from the menu. JFluid prompted
me for the name of the working directory for
the JVM process – with my Tomcat installation
this is the directory in which I started Tomcat.
After specifying the directory I clicked on the
console window that displayed when I started
Tomcat; that allowed me to send the JVM a
signal by pressing Ctrl-Break on my keyboard.
I then returned to JFluid and verified that it
connected to the JVM. This process is awk-
ward but painless. The steps for connecting to
the JVM running on a Unix system are a bit
different; I have some tips on that below.

After JFluid attached to the JVM I clicked
the Monitors tab to see the graph of heap
usage. This graph is always available, even
when no detailed instrumentation of memory
allocations is being done. My next task was to
look into the slow performance of the servlet.
Using the Select and add root method> From
binary menu entry, I specified my PrimeSer-
vlet.doPost() method.
With that done, I chose
the Instrument> Selected
root methods transitively
from the menu and I was
ready to go. In a browser
window I brought up my
HTML form, typed
123456 as the maximum
value, and then clicked
Submit. After a pause my
browser displayed
results.

Meanwhile, JFluid
was profiling my code.
Clicking on the Profile>
Get latest results menu
took me to the CPU
results tab, which dis-
played the window in
Figure 2. The top line
showed that my doPost()
method took 409 mil-
liseconds (ms). Of that
time, however, only 2.16
ms were actually spent in
the code of doPost()
itself; the rest of the time
was spent in methods
called by doPost(). In
particular, the java.lang.
String.split() method
took up a huge amount
of time – 243 ms. That’s

almost twice the amount of time used by
PrimeNumbers.getEratosthenes() to generate
the prime numbers. Drilling a little deeper, I
saw that most of the time in PrimeNumbers
getEratosthenes() was actually spent in a
method I wrote to convert the answer to a
string. Wasteful string processing was hurting
performance.

In addition to wasting CPU cycles, the
code was also wasting heap space. Using the
Monitors tab to watch the graph of heap
usage I noticed that the heap continued to
grow as I used the servlet to request addition-
al prime numbers. Some of that growth was
expected, but the servlet was caching answers
so requests with a previously requested value
should not have caused much additional
memory usage. But they did. This is due to a
bug I put in on purpose: the cache was broken
because the key used to add to the cache was
not the same key used to request entries from
the cache. So if 123456 is requested four
times, there will be four instances of
PrimeNumber in the cache, even though only
one is needed. The extra instances of
PrimeNumber cannot be garbage collected
from the heap because the cache holds refer-
ences to them.

To identify this memory leak I selected
Object liveness from the Instrument menu.
This turned off JFluid’s CPU profiling and
turned on detailed profiling of object alloca-
tions. Since this was a small application, I set

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

36 June 2004 www.SYS-CON.com/JDJ

the allocation counter to 1 to get com-
plete profiling. To reduce the overhead
incurred, I set the stack trace depth that
it records to 3. Then I went back to my
browser and did four more requests of
prime numbers.

When I clicked on Profile > Get lat-
est results, the Memory results tab dis-
played with the list of objects allocated
since my selection of Object liveness.
The line of interest was this one:

4 live obj. - 4 alloc obj. - 3.8 avg. age

- 2 surv. gen. - 4 total alloc obj. -

PrimeNumbers

Each time I requested a prime num-
ber I used the same value: 123456. Only
one live instance of the PrimeNumbers

class should exist. There are three extra
objects because of the cache bug. After
“live objects,” the other figures reported
are:
• alloc. obj: The number of allocations

being tracked
• avg. age: The average of the number

of garbage collections the live objects
have survived

• surv. gen.: The number of different
ages of the live objects

• total alloc. obj: All allocations includ-
ing those that are not being tracked

These numbers provide clues
when you are looking for memory
leaks. Double-clicking the line of fig-
ures brings up a window that shows
the different stack traces that were

captured for each profiled object. In
my example application the problem
was obvious from the number of live
objects reported. Unfortunately,
memory leak detection is not always
so simple. This is why the average age
and surviving generation tail values
are displayed. As described in the
“Features” section, classes with large
values for these figures are potential
sources of memory leaks.

Using JFluid on Unix Systems
The only difference between run-

ning JFluid on a Windows system and a
Unix system is the method of attaching
to a running JVM. On Unix systems the
JFluid tool sends a SIGQUIT signal to
the running JVM to establish a connec-
tion. To do that the JFluid client must be
running with adequate privileges. For
example, when testing on Solaris 9, I
was attaching the JFluid client to the
JVM used by Sun ONE Web Server v6.1.
By default, that JVM was run by the user
ID nobody. So I had to run the JFluid
tool as nobody, not as another user.

Conclusion
JFluid is an experimental but pow-

erful tool. It provides detailed profiling
information on demand, allowing you
to turn profiling on and off at will.
When profiling is on you can control
how much overhead is incurred. The
JFluid tool lacks some features and
polish, but it’s easy to learn and instal-
lation is quick.

References
• JFluid: http://research.sun.com/

projects/jfluid/
• JFluid research: http://research.

sun.com/ techrep/2003/abstract-
125.html

• JVMPI: http://java.sun.com/j2se/
1.4.2/docs/guide/jvmpi/jvmpi.html

LABS
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

Figure 2 Method group CPU results

Figure 1 Profiler settings

Agitar
SOFTWARE

 TM

Know Your Code
 Trust Your Code

�

II

See us at JavaO
ne

 at booth #832, and

attend A
lberto Savoia’s

presentation “B
eyond JU

nit”.

JUnit started the
Developer Testing revolution.

Agitator - The future of Developer Testing for Java™ ™

A unique interface
 lets you know for

each class and method
when tests meet

your criteria for code,
outcome, and

assertion coverage.

Get extreme code
coverage with
automated test data
generation and fully
configurable test
data factories.

Automatically gener-
ated observations
give insight into your
code’s actual behavior
and can be converted
to durable unit tests
with a single click.

Fully integrated code
coverage to make sure
you do not miss any
code.

Automatically
creates tests for

all possible outcomes,
including expected

and unexpected
exceptions.

Are you ready for what comes next?

Agitator intelligently exercises Java code to show you observations about its behavior. You can

convert valid observations to unit tests with a single click. This unique process, called Software

Agitation , helps you create thorough sets of durable unit tests. It lets you edit and expand your

code with confidence and helps you identify bugs as you write or modify your programs. In

conjunction with the Agitar Management Dashboard, Agitator delivers unprecedented productivity,

visibility, and control over the developer testing process, leading to

profound software quality improvements and cost reductions.

Learn more about Software Agitation, and visit today!

™

www.agitar.com

38 June 2004 www.SYS-CON.com/JDJ

any Java developers today
have moved toward some
form of logging and/or unit
test framework, and their

code has been purged of many
System.out. println() statements that
were the traditional approach. Now per-
haps it’s time to get rid of some of those if
(x) {. . .} as well. Nothing in a piece of
code seems to foul up the design as
much as the business logic, and going
from two-tier to three-tier to n-tier hasn’t
done much to solve that problem.

In some dark layer of the code there
is still a tangled mass of ifs, elses, and
look-up tables upon which the whole
thing rests. After a project goes through a
few generations of developers, the “busi-
ness rule” layer becomes a Gordian knot
that defies both change and comprehen-
sion. Rule engines offer a framework for
isolating the business logic in your appli-
cations; this framework is simpler and
more flexible than look-up tables. As a
design approach, it fits Java programs of
almost every conceivable form, purpose,
and budget. Most important, it brings
the elusive goal of code reuse a step clos-
er. This article lays the foundation for
getting started using a rule engine on
your own project.

What Is a Rule Engine?
A rule engine is a system for applying

some set of if/then rules to the data in a
system and then taking some action on
the data or the system itself. Its primary
purpose is to separate the business
logic from the system logic – to exter-
nalize the business logic so it can be
maintained separately. Use a rule engine
to separate the if/then rules from system
code – to externalize them so they can be
maintained separately from the system
code. The behavior of the system can
then be modified without changing code
or needing to recompile/redeploy. Rules
are stored in human-readable form in a
file so they can be changed with a text
editor or rule editor.

For example, a typical storefront
system might involve code to calculate
a discount:

if (product.quantity > 100) {

product.discount = 2;

} else if (product.quantity >= 500 && prod-

uct.quantity < 2000) {

product.discount = 5;

} else if (product.quantity >= 2000) {

product.discount = 10;

}

A rule engine replaces the above
with code that looks like this:

ruleEngine.applyRules(product);

The code no longer contains any ref-
erence to quantity or discounts. That
logic is being handled entirely by the
rule engine. This example is something
of a straw man since this kind of rule is
usually handled with name-value pairs
in a database. However, it illustrates the
main goal of separating system behav-
ior from system code.

Do You Need a Rule Engine?
Rule engines have traditionally been

used in financial applications for such
things as credit scoring and underwriting
because of the many and complex busi-
ness rules these applications require.
Coding such rules directly into the appli-
cation makes application maintenance
difficult and expensive because they
change so often. It also makes even the
initial release of the application difficult
because such rules are often changed

between the time the code is written and
the time it’s deployed. So rule engines
were devised to separate the business
rules from the application logic.

However, virtually every application
has some program logic that needs to
change often or needs to change in ways
not anticipated in the original design. The
real question then is not do you need a
rule engine but how much time and
money will the rule engine save you? Even
if you have only a small collection of rules
that are subject to change, your project
can benefit greatly by separating them
from the rest of the program logic. This is
particularly true during user acceptance
testing when missed requirements and
incorrect assumptions become evident. A
rule engine enables you to make dramatic
changes in system behavior without dra-
matic changes in your code, and it enables
you to make changes at runtime.

A rule engine is also easier to use
and integrate than a database table. If
your code employs if/then logic based
on look-up tables, it can be greatly sim-
plified with a rule engine.

Does Your Project Need a Rule Engine
Separating the business rules from the application logic

TECHNIQUES

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

M

by Chris Moran

Table 1 Typical database lookup table

Quantity % discount
100 .02
500 .05
2000 .1

Chris Moran is a senior Java
developer and the chief architect
of rules4J. He lives and works in

the Washington, DC, area.

cmoran@rules4j.com Figure 1 Classes for the installer application

39June 2004www.SYS-CON.com/JDJ

Why is a rule engine better than
name-value pairs in a database? Name-
value pairs are a tried and true way of
handling business rules in a system. If
we have a system that needs to compute
a product discount on the basis of quan-
tity purchased, we might create a table
in a database that stores percent dis-
counts by quantity (see Table 1).

In our code we would construct a
layer to manage querying this table with
something like select discount from dis-
count_tbl where quantity = 100. Then in
the code that handles business logic, we
would plug in a variable to handle the
value returned by this query. If the dis-
count ever changes, we simply modify
the contents of the table. This works fine
until the time comes when we want to
stop using quantity to calculate discount
and use some metric for customer buy-
ing patterns instead. What if we only
want to do this for a single product for a
few days? Basically we can’t. We would
have to recode the system to query by
buying pattern, add new tables to the
database to store the pairs, and create
new program logic. Then we would have
to undo it all a few days later.

Why does this well-used design turn
out to be so inflexible? Because most of

the rule is still coded into the system. Both
the attribute being checked as well as the
action being taken – the behavior of the
system – are hard-coded. We have flexibili-
ty only in the degree to which something
is done, not in what is being done.

By contrast, a rule engine provides the
flexibility to change not only how much,
but what, when, where, or any other basis
you can imagine. There is no query, no
table, and no rule-specific code. There is
only a call to the rule engine passing raw
data and getting back processed data. All
of the logic of what to change as well as
the basis for that change is controlled by
the rule engine. Before, we were limited to
the tweaking of values; now we can
change the way the system lets us do
business.

The Basic Flow
How does a rule engine fit into the

flow of an application? Basically, it’s just
another class that you instantiate or to
which you get a remote reference. Data
goes in, rules are executed, and data
comes out. You can also write rules that
perform some action on the system
based on the data you pass it. When the
data is passed in, the rule engine interro-
gates the object to see which conditions

in your rules are satisfied. If, for example,
you have a rule:

If quantity > 100 Then do something

the rule engine will call the getQuan-
tity() method on the object being
passed in and compare the return from
that call to the value “100.” Then it will
do something depending on whether
the comparison is true or false.

A rule engine sits in your applica-
tion in exactly the same way as a spe-
cialized class written to handle busi-
ness rules.

Rule Engine Integration
Most of the rule engines available

today loosely implement the JSR 94
specification, providing some common-
ality to integrating engines from differ-
ent vendors. Thanks to JSR 94, integrat-
ing a rule engine into an application
requires very few lines of code. It can be
summed up in these few general steps:
• Obtain an instance of the

RuleRuntime object.
• Get a RuleSession object from the

RuleRuntime.
• Pass data to the rule session object.
• Execute the rules.

40 June 2004 www.SYS-CON.com/JDJ

TECHNIQUES
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

In a typical application, the first two
steps occur once. Getting RuleSessions,
passing data, and executing rules happen
as many times as needed.

Listing 1 shows how it happens in the
code for a typical Web-based insurance
application using the rules4J rule engine.

That’s really all there is to it. Lines 3,
8, 13, and 15 in Listing 1 carry out each of
the four general steps outlined above.

Line 4 obtains an instance of the Rule-
runtime object. The two parameters passed
here identify the path and name of the XML
file that describes this particular rule server.

Line 9 gets a RuleSession object from the
Ruleruntime. A rule session handles the exe-
cution of a single ruleset. The name of the
ruleset in this example is seen in the line
that sets the string m_currentRuleSetName:

TestServer:Test:EligibilityRuleset

The three components of this name
are servername : rulebase : ruleset.

Line 14 adds a List of objects to the
RuleSession. The basic operation of the
RuleSession is to fire the ruleset once for
each object in this List and apply the
rules separately to each object. In our
example, we put only one object into the
List, but there is no limit.

Line 16 instructs the RuleSession to
execute the rules. The call to getObjects()
on line 17 is not really needed because the
RuleSession is not a remote object and it is
acting on references to the objects loaded
into it. The JSR 94 specification actually
calls for StatefulRuleSession.executeRules()
to return a void. Only StatelessRule-
Session.executeRules() returns a List.

A Real-World Example
This real-world example comes from

an installer program I am currently work-
ing on. It creates a custom build and
install of a system into a J2EE container.
The motivation to use a rule engine for
this problem is that the behavior of the
installer can vary considerably depending
on the OS, container, port assignments,
and paths a user selects for the installa-
tion. This behavior has the potential to
change frequently either because contain-
er specifics change from version to ver-
sion or there’s some new system configu-
ration we want the installer to handle. It
also seems a waste to write a new and dif-
ferent installer program for the demo,
eval, and production versions of the sys-
tem being installed. Instead, we would
like to have one general purpose installer
and be able to control the behavior
through rules.

What do we put into the rule engine
and what do we leave in the program? A

general rule of thumb is to put system
capability into your code and system
behavior into your rules. For example, the
code will have the capability to compile a
Java file and create a JAR file with it, but the
rules will describe the behavior that causes
it to happen. The rules dictate which files
get compiled and placed into a JAR, and
the code does the actual JARing and com-
piling. If there is logic that’s specific to the
mechanics of compiling or creating a JAR
file, it should probably stay in the code.

This rule of thumb helps to shape the
purpose of each of the classes the installer
will need. The classes for the installer
application are shown in Figure 1.
• Installer: Handles presentation of the

GUI.
• OSCommand: Handles the many OS

commands the installer will need to be
able to manage (e.g., copying files, cre-
ating directories, JARing files, compil-
ing, etc.). It contains all the logic that
pertains to the mechanics (or capabili-
ty) of the application.

• InstallParams: Models data collected
from the user – container type, install
locations, port assignment, etc.

• InstallProcess: Drives the actual install
process (taking input from the Install-
Params class) and invokes the rule
engine. It encapsulates the behavior of
the application.

We are really interested in what hap-
pens inside the install() method of the
InstallProcess class. This method is where
we find the main logic that must sort
through the user inputs and decide how
to configure and install the system on the
user’s machine. User input is stored in the
params object and passed from the
Installer class. Listing 2 shows the logic as
it might have been written in plain Java.
(Listings 2-4 can be downloaded from
www.sys-con.com/java/sourcec.cfm.)

Clearly, such code will need to be
changed often as we add capability and
respond to vendor changes. In Listing 3
we’ve taken all this logic and expressed it
in an XML file. Different rule engines
implement the expression of rules in very
different ways, and JSR 94 has nothing to
say about how the rules are implemented.
Some vendors do this with XML and some
have developed specialized rule languages
to handle the task (e.g., Fair Isaac’s Blaze).
The XML file in Listing 3 follows the imple-
mentation for the rules4J rule engine.

With the rules now expressed in an
external XML file, the install() method can
be rewritten to invoke the rule engine.
Since we initialize the Ruleserver in a con-
structor, the code in the install() method is
reduced to just a few lines (see Listing 4).

The installer has been improved in
two important ways:
1. The install method is now very general

and, in fact, the InstallProcess class has
become reusable. Because the rule
engine doesn’t care what kind of object is
being passed to it, we no longer need to
write the install() method to take an
instance of any particular class. This
leaves us free to pass all manner of class-
es that contain user input. The only stip-
ulation is that the rules we write in the
rule engine match the properties in the
parameter class.

2. Almost anyone can read, understand,
and modify the behavior of the class,
and they can do so without needing to
recompile the code. This is a tremen-
dous advantage to test teams, cus-
tomer support, and even the develop-
ers who must maintain it.

A Look at the Rule Engines Out There
There are a great many rule engines

to choose from. Below is a sampling of
the products out there.

ILOG JRules and Fair Isaac Blaze
JRules and Blaze have been the main

players in the business rules rule engine
market for some years. They have a well-
established user base in the banking and
insurance industries. These products are
particularly well suited to enterprise
applications because they offer a variety
of tools for nonprogrammers and admin-
istrators. The only drawbacks to either of
them are the price and the learning curve.
If you are building a main-line business
application in the financial services or
insurance sectors, they are the obvious
choice. www.ilog.com/products/jrules
and www.blazesoft.com

WebLogic Personalization Server
BEA has taken the lead in developing

JSR-94. Oddly enough, unless you’re heavily
plugged into the BEA line of products, you
may not even realize that it offers a rule
engine. In fact, it seems that many on the
BEA sales team don’t realize it either. I once
sat in on a sales demo of WebLogic Portal
and Personalization Server and never heard
a word about it. Nonetheless, BEA does
bundle a rule engine with its Portal product.
http://e-docs.bea.com/ wlcs/docs20
/p13 ndev

Rules4J and Java Expert System Shell (Jess)
These products are the emergent players

in the field. They are easy to use and inex-
pensive but sacrifice nothing in basic capa-
bility to the bigger players. They are a good
fit for most solutions, especially for small
projects. They have a short learning curve.

41June 2004www.SYS-CON.com/JDJ

www.rules4j.com and http://herzberg.ca.
sandia.gov/jess

Struts
Didn’t expect to see this one here did

you? Struts is not a rule engine, but it
does have a set of <logic> tags that
enable it to evaluate variables and con-
trol what is displayed on a JSP page. I’ve
included it in the list only because I’ve
been asked how it compares with rule
engines on numerous occasions. If you’re
building a Web application with Struts,
be sure to look at this capability. http://
jakarta.apache.org/struts

Conclusion
Rule engines have been around

for a long time. Charles Forgy designed
the Rete (Latin for net) algorithm
employed by most implementations back
in 1982. Unfortunately, price and lack of
uniformity have kept them out of the
hands of developers on most projects.
This has changed of late. Inexpensive,
powerful, standards-based rule engines
are available for projects of almost any
budget – a good turn of events for sys-
tems engineering. The separation of sys-
tem behavior from system capability is a
key requirement for code reusability. The

failure to separate behavior and capabili-
ty has an inestimable cost, especially if
Java’s 2.5 million developers fail at it con-
sistently. Hard-coding behavior certainly
keeps us busy, but is it really a productive
practice?

Related Reading
• JSR 94 Specification: www.jcp.org/en/

jsr/detail?id=094
• Some good explanations of the Rete

algorithm: http://herzberg.ca.sandia.
gov/jess/docs/52/rete.html and
www.cis.temple. edu/~ingargio/
cis587/readings/rete.html

Listing 1
1 public void init(HttpServletRequest request)

2 {

3 // Initialize the ruleserver

4 m_ruleRuntime = new

Rules4JServer(System.getProperty("DataDirectory"),

"rules4JServer.xml");

5

6 person = getPersonData();

7 m_currentRuleSetName = "TestServer:Test:EligibilityRuleset";

8 // Get a rulesession object from the ruleserver

9 m_currentRuleSession = (StatefulRuleSession)

m_ruleServer.createRuleSession

(m_currentRuleSetName, null,

RuleRuntime.STATEFUL_SESSION_TYPE);

10

11 List personList = new ArrayList();

12 personList.add(person);

13 // Pass the person object to the rule engine

14 m_currentRuleSession.addObjects(personList);

15 // execute the rules in the rulesession

16 m_currentRuleSession.executeRules();

17 personList = m_currentRuleSession.getObjects();

18 m_currentRuleSession.reset();

19

20 }

21

22 private RuleRuntime m_ruleRuntime = null;

23 private Collection m_ruleSetNames = null;

24 private String m_currentRuleSetName = “”;

25 private com.rules4j.RuleSet m_currentRuleSet = null;

26 private com.rules4j.StatefulRuleSession m_currentRuleSession =

null;

42 June 2004 www.SYS-CON.com/JDJ

ntil recently Java programmers have had three

options when wishing to access the XML infoset: they

could use DOM, JDOM, or SAX.With the release of the

JSR 173 StAX specification, Java programmers now have a fourth

option, which gives them the efficiency of SAX with a convenient

and extendable programming model. This article explores the

rationale behind StAX’s pull parsing model and describes how you

can use the API to more cleanly create Java code to extract the

information you need from your XML document. The article

describes StAX’s two API flavors, “cursor” and “event,” and provides

some of the reasons why the specification ended up containing two

sets of reading and writing APIs. Example usage of each of the

reading APIs and each of the writing APIs will be provided.

Document Streaming vs Document Object Model
When creating code that processes XML documents there

are two approaches to dealing with the XML infoset data:
object model and streaming. With object model, you first cre-
ate an in-memory object model tree that holds the complete
infoset state for an XML document; once in memory you can
freely navigate around the tree and even evaluate arbitrary
XPath expressions against the tree. This flexibility comes at a
price – the complete details of the XML document must be
held in memory as objects for the entire duration of the docu-
ment processing. The creation of the document object graph
requires considerable processor resources and takes up a
large memory footprint. This may not be a problem for small
XML documents, but for large XML ones memory may
become a bottleneck to application performance.

With the streaming approach the XML infoset is processed
in a serial manner (as a depth first traversal of the XML infos-
et tree); once an element has been seen its state is discarded
and may be garbage collected. Only the infoset state at the
current point of the document is available at any one time,
which clearly limits the types of processing that can be done

and implies that you need to know what processing you are
going to perform before reading in the XML document. If you
don’t think you will ever need to use XML streaming, try load-
ing a 100 megabyte XML file into your latest application and
watch what happens.

Streaming Pull Parsing vs Streaming Push Parsing
If you are creating an application that’s memory limited,

either because you are running on a constrained device (as in
a phone) or your application is simultaneously processing
several requests (as in an application server), you need to
read your XML documents using a streaming model. In the
past you were restricted to using the Simple API for XML
(SAX). SAX was the first widely available API for reading XML
in Java and provides a very low-level, efficient API that deals
directly with the character data in the XML document. SAX
uses a push processing model in which the SAX library reads
the XML document and calls methods on your application
objects as it encounters elements and text within the XML
document. Although the SAX API is simple, the code applica-
tion developers need to create to use SAX is not.

A “pull” parsing alternative to SAX’s “push” parsing has
lurked in the background for some time, but no longer: the
recently ratified StAX specification now standardizes a pull
parser for Java. StAX provides an alternative processing model
where you call methods on the parser at your leisure and
move the processing along at your command. The key differ-
ence here is that with SAX you don’t have control of the appli-
cation thread and can only accept invocations from the pars-
er. In contrast, with pull parsing you own the application
thread and you control when and where you call the XML
parser.

This control over “when and where” leads to increased
freedoms in application design, allowing you to either collect
all your parsing code together or alternatively place your
parsing code within the objects that understand that particu-
lar type of information.

Pull parsing has the following advantages over push
parsing:
• Parsing simple documents can now be done with simple

code.
• It’s much simpler to write recursive descent parsing code

for more complex documents.
• More than one document can be read by an application at

one time with just a single thread. This can be useful when
part way through reading one document you need to read a
second document.

by David Stephenson

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

U

An overview

FEATURE

David Stephenson has worked in
the computing industry for over
10 years in distributed systems,

middleware, and IT solutions. He
has a wide range of experience in

computing having worked for
Hewlett Packard laboratories and
for HPs middleware divisions cre-

ating e-services technology.
Lately David has worked in the

area of Web services and on both
the Java and .NET platforms and

has been HP’s contributing
expert in the JCP for both JSR 31

and JSR 173.

david.stephenson@hp.com

StAX: Java’s XML
Pull Parser Specification
StAX: Java’s XML
Pull Parser Specification

43June 2004www.SYS-CON.com/JDJ

• The parser can be told to skip parts of the XML
document that are not relevant to the applica-
tion, which simplifies your code and may
reduce processing time and memory churn.

• You can create streaming pipelines in an
object-oriented way that are efficient and
simple to use.

XML Information Model
The StAX specification models an XML doc-

ument as a set of events, and these events are
pulled by the application and supplied in the
order in which they are encountered in the
XML document. The StAX specification defines
the following types of events: Attribute,
Characters, Comment, StartDocument,
EndDocument, StartElement, EndElement,
Namespace, DTD, EntityDeclaration,
EntityReference, NotationDeclaration, and
ProcessingInstruction.

The last five event types are only seen if
your document contains a DTD. Each event
has different properties associated with it
depending on the type of event.

A StAX parser is an engine that reads a
Unicode character stream and converts the
textual data into events. Below is an example
XML document:

<?xml version="1.0" encoding="UTF-8"?>

<pre1:foo xmlns:pre1="http://www.example.com/foons">

<pre1:sometext>

the text <![CDATA[<notallowed> as normal text]]>

other text

</pre1:sometext>

<pre2:bar ratio="5.5" xmlns:pre2="http://www.exam-

ple.com/barns"/>

</pre1:foo>

The above document would be parsed into
the events shown in Figure 1.

As you can see, this small document would
be converted (by default) into a stream of 14
primary events. Each colored circle in the fig-
ure is an event object. The large circles are the
primary events that are seen by the applica-
tion, while the small circles are secondary
events that are generally accessed from some
primary event.

Salient points about the event stream to
note are:
• Every StartElement event has a matching

EndElement event, even for empty events
like <eg/>.

• Attributes, although events, are not (normal-
ly) seen in the event stream but are instead
accessible from their StartElement event.

• Namespaces events are not (normally) seen
in the event stream but instead appear
twice, first accessible from a StartElement
and, second, accessible from the correspon-
ding EndElement.

• XML Character data may be split over more
than one event and crop up where you
might not expect.

While parsing an XML document the StAX
parsing engine maintains a namespace stack.
The namespace stack holds details of all the
XML namespaces defined for the current ele-
ment and its ancestors. This namespace stack
is accessible though the interface javax.xml.
namespace.NamespaceContext, which
includes methods for looking up a name-
space URI given a prefix and looking up a
prefix given a namespace URI.

Cursor vs Iterator
The Story of Two APIs

When programming in Java, object cre-
ation has traditionally been seen as the
enemy of performance. One of the SAX API’s
main advantages is that very few superfluous
objects are created during the parsing of an
XML document. SAX even gives the applica-
tion direct access into the parser’s internal
character buffer in order to read text content!
This lean and mean approach leads to very
efficient parsing of XML. One of the design
goals for StAX was for it to be at least as fast
as SAX.

Very early on during the process of creating
the StAX specification two alternative API
styles were proposed by the expert group. One,
which I’ll call “cursor,” followed SAX’s lean and
mean approach; the other, which I’ll call “iter-
ator,” was a modern object-oriented API utiliz-
ing immutable objects. The expert group
looked long and hard at which API style we
should go with, including doing a perform-
ance analysis of the two styles. What we dis-

Figure 1 An Event streem

Why Settle For
“Sorta Close?”

Get The Workflow
That Fits

Reactor 5 – the ideal solution for
Workflow Automation, Business
Process Integration and
Web Services Orchestration

Fits Within Your Architecture
J2EE-based, XML-driven, platform neutral

Fits Your Business Requirements
The extensibility your developers want, the
simplicity your business users demand

Fits How You Want To Buy
Flexibly priced, with source code access

Download your free evaluation
copy at www.oakgrovesystems.com,
or contact us at 1.818.440.1234.
We can’t wait to help you…

Declare Your Workflow
Independence!™

© 2004 Oak Grove Systems. All rights reserved. All product names are trademarks
or registered trademarks of their respective companies.

44 June 2004 www.SYS-CON.com/JDJ

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

covered was that we were trying to support three different
end-user developers:
1. Library and infrastructure developers: The group who cre-

ates app servers, JAXM, JAXB, JAXRpc, implementations,
etc., and needs a very low-level and close-to-the-metal API
with little overhead and few requirements for extensibility.

2. J2ME developers: This group wants an XML pull parsing
library that’s small and simple and has a tiny footprint.
They have little need for being able to extend the parser or
modify the event stream.

3. J2EE and J2SE developers: This large group generally
wants a simple, efficient pull parser that naturally pro-
duces elegant bug-free code while allowing for more com-
plex features such as stream modification and introducing
new application event types.

We looked at many inventive ideas on how to create a sin-
gle API that would allow us to “have our cake and eat it,” but
each of these ideas was rejected as they left us with a bad
taste in our mouth and invariably produced a less-pre-
dictable API. In the end our desire to support these three
developer types and our requirement that we be just as fast
as SAX led the expert group to support both API styles.

Cursor API
The cursor API contains a central parser interface called

XMLStreamReader that includes accessor methods for all the
possible information you could retrieve from the XML
Information model. The parser interface contains methods for
accessing the document encoding, element names, attributes,
namespaces, text content, processing instructions, etc. Methods
are provided to allow access into the internal character buffer just
as in SAX. The cursor approach is like a mirror image of SAX and
provides direct access to string and character information while
exposing methods with integer indexes for accessing attribute
and namespace information just as in SAX. Thus it’s possible to
access all of the Information Model via a set of methods that
return strings so object allocation is kept to a bare minimum.

Listing 1 provides some example code that uses an
XMLStreamReader instance called “sr”, which reads the
example document listed in Figure 1. The code uses “sr” to
walk over the document and retrieve the text content of the
element <pre1:sometext> and the value of the ratio attribute
of the element <pre2:bar>.

Listing 1 assumes the XMLStreamReader sr has just been
created, i.e., StartDocument will be the first event.

Iterator API
The iterator API presents the event stream as an ordered list of

immutable event objects. The StAX API defines a common base
interface called XMLEvent and a subinterface for each of the
event types listed in the XML information model. The Iterator API

contains a central parser interface called XMLEventReader with
just five methods in it, the most important being nextEvent(),
which returns the next event in the stream. The interface
XMLEventReader implements java.util.Iterator so it can be
passed into routines that can handle the standard Java Iterator.

The common super interface XMLEvent contains meth-
ods for finding the actual event type and downcasting to the
event subtypes. Listing 2 shows the equivalent code for read-
ing our example XML document but using the
XMLEventReader “er”.

Clearly in a real application the three QName objects
would be held in static final fields but are left inline here to
aid in comparing the code examples.

What can I do with the iterator API that I can’t do with the
cursor API?

As the XMLEvent subclasses are immutable objects, you
can place them in arrays, lists, and maps and pass them
through your application as you desire, even after the parser
has moved on to later events.

You can create your own subtypes of XMLEvent that are
either completely new information items or extensions of
existing events but with extra methods.

You can modify an event stream by adding or removing
events in a way that’s much simpler to code than with the
cursor API.

Which API Should I Use?
This decision can only be made by the individual devel-

oper depending on the specific situation; if one API fitted all
needs we would not have ended up with two.

My personal rules of thumb:
1. If you’re programming on J2ME, use the cursor API.
2. If you’re creating low-level infrastructure or libraries and

you need to achieve the best possible performance, use
the cursor API.

3. If you want to create pipelines of XML processing, use the
iterator API.

4. If you want to modify the event stream, use the iterator API.
5. If you want to future proof your app by enabling plug-

gable processing of the event stream, use the iterator API.
6. If in doubt, use the iterator API.

Performance: What’s the Beef?
During the expert group design discussions for StAX, the

author created a prototype pull parser that provided both types
of API styles, and a series of performance tests were performed
using a wide range of XML test data. Due to the fact that the
internal parser implementation was common for all the tests,
the results showed the performance impact of using the iterator
API style versus the cursor API style when accessing the parser.

The performance differences between the API styles arise
mostly because of the extra objects that are created and later
need to be garbage collected. The cursor and event API need
to create the objects shown in Figure 2.

The cursor API does not need to create string objects for
XML character data as it provides direct access to the internal
character buffer. In addition, the iterator API needs to create
the immutable event objects. The items colored yellow are
string objects that may be cached to improve performance at
the expense of some cache management complexity.

Figure 3 shows the number of bytes of XML processed per
millisecond averaged over different sets of XML test files. The
test was run on JDK 122 and JDK 142 for both API styles and
with and without string caching enabled. The test files are
loaded into memory so there is no I/O during the test runs.Figure 2 Objects created during parsing

Shrink my development time.

Give me the technology to deliver it

Faster. Better. Easier.

Faster. Outsmart your development deadlines with AMD64 technology.

Better. Direct Connect Architecture lets you do more.

Easier. Your platform choice is simpler, since AMD64 technology
excels across a wide variety of application workloads.

Register at developer.amd.com and enter a drawing for a chance to win
an AMD64 system. See official rules for details and eligibility requirements.

© Copyright 2004 Advanced Micro Devices, Inc. All Rights Reserved. AMD, the AMD Arrow Logo, and combinations thereof, and AMD64 logo are trademarks of Advanced Micro Devices, Inc.

46 June 2004 www.SYS-CON.com/JDJ

Clearly there has been a massive (3–6 times) performance
improvement across the board from JDK 122 to JDK 142. The iter-
ator API without any string caching is 6.5 times faster on JDK 142.

String caching makes a big difference on JDK 122, run-
ning up to 50% faster, but only a small difference on JDK 142,
showing less than a 5% improvement with perfect caching.
Clearly we can now take Joshua Bloch at his word when he
says that object pooling of lightweight objects is unnecessary
with modern JVMs.

The overhead from using the iterator API style instead of
the cursor API is around 25–30%. This sounds like a lot but
remember this test program is doing 90% XML parsing and
10% application logic, whereas your typical application
would probably be the other way round – 90% app logic
and 10% parsing – which would drive the overhead down to
about 3%, which is in the noise for most applications.

Of course your mileage may vary depending on your par-
ticular usage scenario. With the first generation StAX parser
coming out soon, we’ll see if this level of performance differ-
ence is also reflected in the real StAX parsers.

StAX Input Factories
How do I create an instance of XMLStreamReader or

XMLEventReader?
StAX parsers that implement either of these two APIs are

created by the javax.xml.stream.XMLInputFactory, which fol-
lows the standard factory pattern. When we get JAXP support
you’ll be able to create instances via the JAXP APIs. Create a
new instance of XMLInputFactory by calling newInstance();
this method will search for a StAX implementation using the
standard techniques.

The input factory has a set of configuration parameters
that control the features of the parser that will be created by

the factory. Once you have an instance of the factory you
can override the default configuration parameter values.

Some of the more interesting configuration parameters are:
• javax.xml.stream.isCoalescing: Defaults to false but when

set to true will request a parser that coalesces all conta-
gious text into a single character event.

• javax.xml.stream.supportDTD: Defaults to true, but when
set to false will request a parser that does not support
DTDs in XML documents.

• javax.xml.stream.resolver: Can be used to set an imple-
mentation of XMLResolver, which is used during parsing
to resolve external entities.

Below is the code to create an instance of the
XMLStreamReader on a File f.

XMLInputFactory factory = XMLInputFactory.newInstance();

XMLStreamReader sr = factory.createXMLStreamReader(new

FileInputStream(f));

And to create an XMLEventReader

XMLInputFactory factory = XMLInputFactory.newInstance();

XMLEventReader sr = factory.createXMLEventReader(new

FileInputStream(f));

If we wanted a differently featured parser, we would set
some configuration parameters before creating the parser
as follows:

XMLInputFactory factory = XMLInputFactory.newInstance();

factory.setProperty("javax.xml.stream.isCoalescing",Boolean.TRUE);

factory.setProperty("javax.xml.stream.supportDTD",Boolean.FALSE);

XMLEventReader sr = factory.createXMLEventReader(new

FileInputStream(f));

Some of the standard configuration parameters are option-
al, meaning that some implementations may choose not to
support the feature. You can check to see if a standard (or non-
standard) configuration parameter is supported by calling
isPropertySupported() on the factory instance. Here’s an exam-
ple of using an optional feature:

XMLInputFactory factory = XMLInputFactory.newInstance();

if(factory.isPropertySupported("javax.xml.stream.isValidating")){

factory.setProperty("javax.xml.stream.isValidating",Boolean.TRUE);

factory.setProperty("javax.xml.stream.reporter",this);

}

XMLStreamReader sr = factory.createXMLStreamReader(new

FileInputStream(f));

The above code instantiates a DTD validating parser if the
implementation supports DTD validation.

Once you have created either an XMLStreamReader or an
XMLEventReader parser you can find out what its configura-
tion is by calling getProperty() on the parser.Figure 3 Relative performance of cursor and event API styles

When programming in Java, object creation has traditionally
been seen as the enemy of perfomance”“

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

48 June 2004 www.SYS-CON.com/JDJ

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

One important design feature of StAX is that you must
specify the properties of the parser before you create the
parser and you cannot change the property value for an exist-
ing parser nor set a new data source into the parser. The
rationale behind these restrictions is that we wanted to
enable optimized and modular implementations.

A StAX implementation could use a special parsing
engine with its own optimized byte to Unicode decoding
when reading from a java.io.InputStream; alternatively
it could use a different parsing engine when a java.io.
Reader is the data source. Another example is the javax.xml.
stream.supportDTD property that when “false” could trigger
an implementation to use a simpler, faster parsing engine. If
we allowed any of the configuration parameters to be modi-
fiable after the parser was created, these types of optimiza-
tion would be considerably harder to implement.

What About Writing XML?
StAX is a truly bidirectional API and can be effectively

used to generate XML, either from scratch or as the result of
a StAX Event pipeline. The StAX writers are intelligent in
that they maintain namespace stacks and can automatically
generate namespace prefixes (if you don’t care what they
look like). The writers can also close elements using the cor-
rect prefix and localname.

Listings 3 and 4 show some code to generate our example
XML file using someText and ratio variables. If you want to use
the cursor API, the code appears as in Listing 3. If you want to
use the iterator API, the code should look like Listing 4.

The writers automatically escape any illegal Unicode
characters such as < or & that are found in character con-
tent or attribute values.

Summary
After a lot of hard work the StAX API specification has final-

ly seen the light of day and Java application programmers now
have a standard pull parser interface for XML. The StAX API
has many advantages over the SAX API for developers, includ-
ing a simpler programming model and the ability to modify
the event stream data and extend the information model to
allow the introduction of application-specific additions. J2ME
programmers now have an XML API that matches their
resource-constrained environments, while library developers
now have a standard API to use that fits in with their client
applications’ threading models and performance expectations.

Acknowledgment
I would like to thank the members of the JSR 173

expert group for an interesting and stimulating set of dis-
cussions over the past two years.

Listing 1: Reading with the XMLStreamReader
while(sr.hasNext()){

sr.next();

if(sr.getEventType() == XMLStreamConstants.START_ELE-

MENT){

if(sr.getLocalName().equals("sometext") &&

sr.getNamespaceURI().equals("http://www.example.com/foons")){

// get all the text content of <sometext> and

store in someText variable

someText = sr.getElementText();

} else if(sr.getLocalName().equals("bar")

&&

sr.getNamespaceURI().equals("http://www.example.com/barns")){

// get the value of the ratio attribute

ratio = sr.getAttributeValue(null,"ratio");

}

} else {

// ignore event

}

}

Listing 2: Reading with the XMLEventReader
while(er.hasNext()){

XMLEvent event = er.nextEvent();

if(event.getEventType() ==

XMLStreamConstants.START_ELEMENT){

StartElement se = event.asStartElement();

if(se.getName().equals(new QName("http://www.exam-

ple.com/foons","sometext"))){

someText = se.getElementText();

} else if(se.getName().equals(new

QName("http://www.example.com/barns","bar"))){

Attribute ratioAttr =

se.getAttributeByName(new QName("ratio"));

if(ratioAttr != null){

ratio = ratioAttr.getValue();

}

}

} else {

// ignore event

}

}

Listing 3: Writing with the XMLStreamWriter
XMLOutputFactory factory = XMLOutputFactory.newInstance();

factory.setProperty("javax.xml.stream.isPrefixDefaulting",

Boolean.TRUE);

XMLStreamWriter sw = factory.createXMLStreamWriter(new

FileOutputStream(destination),"UTF-8");

sw.writeStartDocument();

sw.writeStartElement("http://www.example.com/foons",

"foo");

sw.writeStartElement("http://www.example.com/foons", "some-

text");

sw.writeCharacters(someText);

sw.writeEndElement();

sw.writeStartElement("http:/www.example.com/barns", "bar");

sw.writeAttribute("ratio",ratio);

sw.writeEndElement();

sw.writeEndElement();

sw.writeEndDocument();

sw.close();

Listing 4: Writing with the XMLEventWriter
XMLOutputFactory factory = XMLOutputFactory.newInstance();
XMLEventFactory eventFac = XMLEventFactory.newInstance();

factory.setProperty("javax.xml.stream.isPrefixDefaulting",Boolean.TR
UE);

XMLEventWriter ew = factory.createXMLEventWriter(new
FileOutputStream(destination),"UTF-8");

ew.add(eventFac.createStartDocument());
ew.add(eventFac.createStartElement(null,"http://www.exam-

ple.com/foons", "foo"));
ew.add(eventFac.createStartElement(null,"http://www.exam-

ple.com/foons", "sometext"));
ew.add(eventFac.createCharacters(someText));

ew.add(eventFac.createEndElement(null,"http://www.example.com/foons"
, "sometext"));

ew.add(eventFac.createStartElement(null,"http:/www.example.com/barns
", "bar"));

ew.add(eventFac.createAttribute("ratio",ratio));

ew.add(eventFac.createEndElement(null,"http://www.example.com/barns"
, "bar"));

ew.add(eventFac.createEndElement(null,"http://www.example.com/foons"
, "foo"));

ew.add(eventFac.createEndDocument());
ew.close();

Java
J2EE

WebSphere
WebLogic

.NET
UML

GYDTSTUT*

Over 30,000 developers from hundreds of
Fortune 1000 companies have come to InferData
over the last decade.

They keep coming because their companies
know InferData is the best way to stay on top of
the newest technologies.

Here’s what clients like IBM, Sears, GE and
American Express are saying about us:

• “Excellent course!”
• “Off the charts!“
• “Highly recommended!”
• “Lots of hands-on labs!”
• “Outstanding! Wouldn’t consider

going anywhere else!”

World-Class Training.
InferData has a full curriculum on the latest
technologies, taught with the precision and
thoroughness your developers need to keep in top
form. A quick look at our course catalog will prove
that we know what we’re doing.

Managers and Developers will benefit.
InferData offers more than 130 courses! Everything
from “Managing Object-Oriented Projects: An
Overview for Busy Managers” to “Mastering J2EE
Development with Rational XDE.”

Consulting and Mentoring too.
Our decade of building enterprise systems can
offer invaluable insight into your operations. We
can help guide your organization through develop-
ment barriers and move you quicker to your goals.

TTIDT*
*Talk To InferData Today. We’ll show you how your
organization can move faster and more efficiently,
and how the right information can make a real
difference in your development efforts.

We’ll see you at JavaOne 2004,
June 28 – July 1 in San Francisco.

*Give Your Developers The Skills To Use Them.

Training. Consulting. Mentoring.
888-211-3421 www.inferdata.com

50 June 2004 www.SYS-CON.com/JDJ

hile software frameworks are always created with the
best intentions, I believe that many of them fail for
the same reason that any other software project does:
a lack of clear understanding by the programmers of

who their users are and what scenarios they are trying to solve.
Not all frameworks are bad, and it’s impossible to write

software without using someone else’s code. So what makes a
good framework?

The Framework Team
The Mythical Man-Month by Frederick P. Brooks (Addison-

Wesley) describes an effect he coins “the second system syn-
drome.” This is where developers working on their second proj-
ect are at their most dangerous – they try to implement every
bell or whistle the first system lacks, and they overengineer and
design unnecessary features. These are also the kind of people
who unfortunately are drawn to writing frameworks. They easily
fall into the trap of abstracting behavior to the point of silliness.

I myself have been guilty of this when working on a software
project that was made part of “the framework team.” We had
just finished building a fairly reasonable program for one set of
users on a successful proof-of-concept project, and were

embarking on the entire enterprise-wide application with inte-
grated software from accounting to invoicing to CRM. We had
our own room and sat for over a year designing the ultimate set
of software frameworks to solve the problem. We all fell horribly
into the trap where we believed programmers using our frame-
works would just want to lazily cookie cut end-user applications
with just a few mouse clicks; we created software tools for them
rather than useful class libraries and documentation.

The project failed to deliver anything that ever made it in
front of an end user and, scarily, at the next company I
worked for, I found a similar doomed group tucked in a cor-
ner building with their own ultimate set of frameworks. My
conclusion is that if your end users are other programmers,
make sure it’s them you are always trying to help and don’t try
to second guess their issues – talk to them, listen to them, and
create something that is useful and helpful.

Die Gracefully
At my current job I spend quite a bit of time debugging

other people’s code. When you run into trouble it’s always
good to get another pair of eyes to review your work to spot
something you may have missed. The most frustrating type of
problem is one encountered because a framework developer
was trying to be too clever and squelched an exception or sim-

ply didn’t document or think through the API clearly enough. I
have little patience with these and my solution is often to
throw out the framework classes and just strip things back to
the bare bones. That way everything in the stack is familiar so
you’re in control of what your program does, and you’re not at
the behest of someone else’s ideas of what it should be doing.

Harvest or Grow?
A popular line is “frameworks are harvested and not grown.”

To a certain extent I agree with the philosophy behind this –
until you’ve actually solved a problem with a concrete imple-
mentation, it makes little sense to try and preempt it with fancy
code that might be wide of the mark. Having solved the prob-
lem once, the next time it’s encountered the original code can
be refactored to create reusable and shareable building blocks.
The idea being that over time, a set of useful frameworks will
naturally take shape. While this works on a small scale, often for
the sole benefit of a single programmer encountering similar
problems again and again with a set of sharper tools each time,
I believe it doesn’t scale into large application frameworks. A
good set of class libraries or application frameworks needs to be
designed from the ground up. The API must be well thought out

and thoroughly documented with Javadoc and example code. A
framework that grows organically often turns out be someone
else’s harvested garden mulch.

Everyone Wants to Write Frameworks
A great line I heard at a presentation many years ago was

“everyone wants to write a framework, but no one wants to
use one.” The reasons for this are the ones described above:
the framework hasn’t been thought through properly. It’s
evolved from someone’s set of toolbox classes with no clear
API or use cases, and has been developed by a programmer
working on his second system and daydreaming about creat-
ing a new fourth generation language.

Despite all of this, we need more frameworks. Too much day-
to-day programming should be abstracted into application
frameworks, class libraries, and the language itself. I’d much
rather spend time with end users trying to build software to
help them with their business problems than writing some
grungy application code that I wish had been available for use
in a set of well-documented frameworks. Before anyone begins
writing another framework, however, please put yourself in your
users’ mindset and ask what they want and provide them with
it. Don’t fall into the trap of providing what you think they want,
or even what you yourself want. The two are not the same.

Frameworks – Strongest Support
or Weakest Link?

Joe Winchester is a
software developer

working on WebSphere
development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester
Desktop Java Editor

W

DESKTOP JAVA VIEWPOINT

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

The most frustrating type of problem is one encountered because a
framework developer was trying to be clever and squelched an exception

or simply didn’t document or think through the API clearly enough ”
“

52 June 2004 www.SYS-CON.com/JDJ

ou can never be too rich or
too thin. That’s what Wally
Simpson might have quipped
to her stock trading application

had she lived to enjoy the blessings of
the Internet. Indeed, Wally may have
had a point there: today’s mainstream
approaches to end-user computing
are lacking. Fat clients are difficult to
distribute and HTML is inadequate
for high-end GUIs. A client that is
both rich and thin would be the ideal
solution.

Rich Thin Clients
Java is a great platform for rich thin

clients (RTCs). The availability of JREs
on both the client and server is a for-
midable basis for an RTC library. Given
standard Java infrastructure, such a
library can offer server-side peer
objects for widgets and a presentation
engine executing the GUI for any
number of applications, as shown in
Figure 1.

This library will be lean and mean
because it can:
• Delegate event handling and graph-

ics functions to the JRE on the client
• Profit from the fact that JRE runs

both as a plugin within a browser
and on the desktop

• Make use of Java Web Start for distri-
bution

• Leverage J2EE for communication
and server-side modeling of the user
interface

An RTC library is not a panacea. Yet
it may go a long way toward rich GUIs
without getting chubby or sacrificing
the core advantages of HTML. As we’ll
see later, a number of products testify
to this point today.

Let me discuss some key character-
istics of a well-designed RTC library
and how it can profit from Java.

Never Too Rich
From the perspective of usability,

an RTC presentation engine should
support as many rich client functions
as possible. The functionality must be

significantly better than HTML’s,
offering:
• A more responsive interface that

minimizes server round-trips
• Direct manipulation
• Comfortable widgets like tables with

self-sorting columns, trees, and high-
end editors

• Superior integration of desktop
functions

Never Too Thin
From the point of view of distribu-

tion and operation, an RTC presenta-
tion engine should be as lean as possi-
ble, that is:
• Free of application-dependent code

so that the rollout of applications is
server-side only

• Sufficiently small to enable distribu-
tion as an applet

• Use existing J2SE and/or J2ME infra-
structure wherever possible

Evidently there is a trade off between
the wish lists for thin and rich. This sug-
gests a further requirement: an RTC
engine must be as lean as possible in its
basic form, but extensible. It should
come as a slim core library with plug-
gable extensions and an API allowing the
integration of existing rich client libraries.

Optimized Communication
An important bonus of Java-based

RTCs is that their network bandwidth

requirements can be minimized.
Typically communication will be sever-
al times more efficient than for HTML
for the following reasons.

First, server round-trips can be
slashed by executing tasks within the
presentation engine, for example:
• The enabling and disabling of widg-

ets that depend on each other
• Syntactic validations and formatting

of text fields
• Sorting of lists or columns
• Caching

A second means to minimize
communication is to model the
status of user interfaces on the server.
This enables the session to keep track
of what is visible on the client and thus
limit data transfer to visible items.

Server-Side Programming Model
Designing a client/server applica-

tion is substantially simplified when a
server-side programming model is
employed. This avoids the difficult
issue of splitting functionality between
client and server.

A well-designed RTC library en-
forces a server-side model. Notice
that this will exclude an approach in
which developers specify code that is
transferred to the client and executed
there. This latter approach leads to
fat client programming, which is
undesirable.

Never Too Rich or Too Thin
Following the middle road

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

RTCS

by Bernhard Wagner

Y

Bernhard Wagner is an
independent software

consultant and longtime
developer of rich-client

software. He developed a
visual programming

environment allowing the
visual composition of

MultiMedia components,
3D direct manipulation

applications, and numerous
HTML applications.

bw@xmlizer.biz Figure 1 JRE-based architecture for rich thin clients

54 June 2004 www.SYS-CON.com/JDJ

Seamless Object-Oriented API
A further feature for an RTC library

is a seamless object-oriented design
and API. Ideally, an RTC library offers a
server-side API that corresponds to the
API of a well-known library like Swing,
AWT, or SWT.

The benefit of such a design is that a
cumbersome mix of technologies can
be avoided: instead of cobbling the GUI
together with Java, JSP, HTML, or pro-
prietary XML languages, the developer
can use a seamless Java API.

Server-Side Execution
As mentioned, downloading user-

defined code to the client for execution
is undesirable. An RTC system must
execute everything on the server, except
for the GUI.

In fact, even the model of the GUI
must reside on the server in order to
optimize communication (see above).

Notice that server-side execution is
also an advantage for security as it
can be handled much easier on the
server.

Pluggable Communication
The communication protocol is

one of the major issues for client/serv-
er applications. Depending on the
environment in which an application
must run, different protocols must be
used.

For this reason, an RTC library
should isolate client/server communi-
cation in pluggable modules, such that
an application can be configured to run
over HTTP, HTTPS, RMI/IIOP, or other
protocols.

Standalone/Offline Execution
With a Java VM on both the client

and server, an RTC library can enable
flexible on/offline execution with a sin-
gle code base.

If pluggable communication is
in place, all that’s needed is a module
that simulates client/server interac-
tion. Such a module will allow you to
run a client and server in a single
VM and thus on a standalone
machine.

Applied cleverly, standalone execu-
tion will serve three purposes. It will:
1. Simplify development because

the edit/compile/test cycle can
be executed locally and within the
IDE

2. Support incremental growth – appli-
cations starting as a single user can
be converted to multiuser with mini-
mal effort

3. Enable development of applications
that can run both online and offline

Leveraging Standards
J2EE, J2SE, and J2ME provide a

superb standardized platform for RTC
systems. All basic functions required
for the GUI, communication, server
sessions, and security are readily
available. As a consequence, a well-
designed RTC library is just a thin
software layer that essentially provides
a server-side API for the standard
widgets of Swing or AWT, delegating
everything except the core RTC func-
tions to the standard libraries. An API
for SWT is, of course, also an option
for cases in which the client-side
presentation engine relies on SWT.
Figure 2 shows how an RTC library
can be embedded into a standard
infrastructure.

Leveraging Existing Infrastructure
Focusing on core RTC functions is a

key requirement, not only with respect
to standards. An RTC library should be
designed to integrate with the existing
infrastructure. It should, for example,
fit into an existing platform for HTML
applications, enabling a mix and
match of HTML clients and rich
clients, as well as multichannel appli-
cations that share everything up to the
presentation layer.

An RTC library is, therefore, typi-
cally an extension of an existing soft-
ware platform and not a platform of
its own.

Products on the Market
A number of products illustrate how

it can be done: AltioLive, AppProjector,
Canoo ULC, Classic Blend, Droplets,
RSWT, and Thinlets.

All of these are Java-based RTC
libraries. They have put a different
emphasis on the defined require-
ments, and some of them are not
pure Java but are hybrid, employing
proprietary XML languages. Their
common denominator is that they
all prove the viability and useful-
ness of Java for RTCs. Products
that forego the advantages of JRE
on the client are available as well:
examples are Classic Blend and
Macromedia Flex. They use Java-
Script and a proprietary execution
environment on the client,
respectively.

Conclusion
Today’s mainstream approaches

of the HTML thin client and the
fat client productivity application
are antipodes. The one’s strength
is the other’s weakness.

The rich thin client (RTC) is the
middle road that often succeeds in
offering the benefits and avoiding the
weaknesses of both. Such magic is not
possible for all scenarios, but for many
client/server applications.

Various Java-based RTC technolo-
gies exist today. Java is particularly
suitable for RTC libraries because of its
cross-platform availability and broad
standard infrastructure. Most impor-
tant, Java enables a seamlessly object-
oriented, server-side programming
model that avoids the cumbersome
mix of technologies with proprietary
XML languages, JSP, HTML, and others.

Now that the rich client is becom-
ing popular again, we may expect that
many of those who have experienced
the benefits of HTML will not be happy
to cope with fat clients again, or with
the prospect of building a new infra-
structure for client/server computing
from scratch. Some of them may go
with Ms. Simpson’s advice and choose
Java RTCs.

References
• AltioLive: www.altio.com
• AppProjector: www.asperon.com
• Canoo ULC: www.canoo.com/ulc
• Classic Blend: www.appliedreason

ing.com/products_what_is_Classic_
Blend.htm

• Droplets: www.droplets.com
• RSWT: http://rswt.sourceforge.net
• Thinlets: www.thinlet.com
• Classic Blend: www.appliedreason-

ing.com/products_what_is_Classic_
Blend.htm

• Macromedia Flex: www.macro
media.com/software/flexFigure 2 RTC library leveraging J2EE

TUTORIAL
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

56 June 2004 www.SYS-CON.com/JDJ

ou’ve probably seen the breathtaking photographs

of the surface of Mars from the rovers Spirit and

Opportunity.You’ve also seen the amazing high-

altitude photographs taken from satellites orbiting Mars. But let’s

face it, the rovers must land on flat, boring areas and the satellites

are too high above the interesting places like canyons and craters.

What is an Earth-bound Java programmer to do? Using the

Java3D API and publicly available data, you can create pictures

like Figure 1.

The Java3D API is robust enough to handle just about any
3D programming job. The complexity can also make a grown
man cry. This article covers the Java3D basics with an empha-
sis on producing something from another world without the
tears. We’ll first go over the anatomy of a scene – how to add
shapes to the scene, light it, and explore it by moving the
view. In the end you’ll have a way to explore any location on
Mars from any angle moving through the landscape in real
time.

What Is Java3D?
Java3D is a sophisticated programming interface intended

for rendering three-dimensional scenes and sounds. The lat-
est version is 1.3.1 and supports DirectX and OpenGL. There
is substantial support for vector math, animation, lighting,
shading, fog, stereo images, collision detection, texturing,
loading three-dimensional models from other products, and
interactions with the universe you create.

Your Java3D universe consists of a tree structure called a
scene graph that contains the shapes, lights, and virtual cam-
eras called views. Java3D automatically renders the scene,
properly lighting the shapes based on the view, and changing
the view based on user input. Java3D takes care of details like
removing hidden surfaces and applying textures to surfaces.
The scene graph is the center of your Java3D universe.

Creating a Scene
A VirtualUniverse has a scene graph created as a tree

structure with a root of a Locale object (see Figure 2). All

other nodes in the scene graph form a parent-child rela-
tionship with other nodes in the tree. A scene graph sepa-
rates the content of the universe from the viewing parame-
ters at the Locale root. The nodes of the content and view
branches of the tree are grouped with a BranchGroup. A
group node can have multiple children and one parent in
the tree. Another example of a group node is a
TransformGroup. As the name implies, the TransformGroup
is for uniformly translating, scaling, and rotating child
nodes. In our example, a TransformGroup is used on the
view branch to allow the virtual camera to be moved in the
scene.

Figure 2 shows additional objects that make up the view
branch, which are beyond the scope of this article. Luckily,
Java3D has a SimpleUniverse utility class so it’s easy to create
the universe and view branch. The SimpleUniverse object
allows you to add your content branch and access the view
transform group to change the view.

The content branch contains the shapes and lights in
your scene. User interaction with the scene is accom-
plished by adding behaviors to the content branch. A
behavior links keyboard, mouse, or temporal events with
changes to the content or view. For example, the keyboard
or mouse can be used to update the view transform, allow-
ing the user to move the virtual camera through the scene.
Time can be used to animate the movement or morphing
of shapes in your scene. For our purposes we’ll use a modi-
fied version of the Java3D KeyNavigator behavior to move
over the surface of Mars. There are many other predefined
behaviors in Java3D and you can create your own as well.
The following code shows how to build the universe and
scene.

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

by Michael Jacobs

Y

FEATURE

Mike Jacobs is a technical
architect working in the

information services division
at the Mayo Foundation

for Medical Education and
Research. Mike has developed

CPU hardware, microcode,
application components,

and applications in the
financial and health care

industries. He has extensive
design and implementation

experience in object-oriented
languages including

Smalltalk, C++, and Java.

jacobs.michael@mayo.edu

Copyright 2004 © Mayo Foundation for Medical
Education and Research Figure 1 A Mars landscape rendered with Java3D

EXPLORING JAVA3D

Bringing Mars Down to
Earth withJava3DJava3D

57June 2004www.SYS-CON.com/JDJ

…

1 canvas = new Canvas3D(config);

2 universe = new SimpleUniverse(canvas);

3 BranchGroup content=createSceneGraph();

4 addBehaviors(content);

5 addLights(content);

6 content.compile();

7 universe.addBranchGraph(content);

// The scene is ready to render

This code includes the steps taken in the Java3DApplication
class included in the source code. (The source code for this
article can be downloaded from www.sys-con.com/java/
sourcec.cfm.) This class implements a common recipe for
Java3D applications.

Shaping Up
Visual objects in Java3D are represented in the content

branch by instances or subclasses of Shape3D. A shape
maintains references to an appearance and geometry.
Java3D considers the appearance and geometry to be node
components. Node components are associated with tree
nodes through a reference relationship as shown in Figure 2.
Nodes in the scene graph determine what is rendered while
node components determine how the nodes are rendered.
Node components are not technically considered part of the
scene graph because multiple shape nodes can share an
appearance or geometry.

The geometry object determines the topology of the shape.
There are several utility geometries available to create cubes,
spheres, cylinders, and cones. These utility geometries are use-
ful for learning, prototyping, or even assembling larger com-
posite visual objects. More complex geometries can be created
with subclasses of GeometryArray that organize arrays of trian-
gles, lines, points, or quadrilaterals. Creating geometries with
the GeometryArray subclasses is complex, but thankfully the
GeometryInfo utility class drastically simplifies the process.
We’ll use the GeometryInfo class with a QuadArray to create
the landscape geometry for Mars.

The appearance object is used to describe the color,
material, polygon, texture, and transparency attributes of a
shape (see Figure 3). A ColoringAttributes object defines the
color of the shape in an unlit scene as well as the type of

shading to use (i.e., flat or smooth). The Material object
specifies the color of the entire shape in a lit scene as well as
the shininess of the shape. The PolygonAttributes object is
used to render the shape as points, a wire frame, or a solid,
and determine which polygons are to be culled. The Texture-
Attributes object controls how textures are combined with
the shape color if the shape is textured. Texturing is valuable
when there is a need to present a higher level of detail than
what is available with the geometry. As you might have
guessed by now, the TransparencyAttributes object helps you
render objects such as glass or water.

Now that you have your shape defined with a geometry and
appearance, all you have left to do is add the shape to the con-
tent branch group. This is done by using the addChild()
method on the branch group.

Shedding Light on Your Scene
Very simple scenes don’t require lighting; however, if we

are to render a realistic landscape, lighting is very impor-
tant. Java3D comes through with support for ambient,
directional, point, and spotlights. Ambient light has no
location or direction but still illuminates the scene.
Directional lights have no location but have a direction
specified by a vector. Point lights provide attenuated light
from a position and illuminate in all directions. Spotlights
also provide attenuated light from a location as well as
direction with added control of the spread angle and con-
centration. For all types of lights you can specify the color
and the region of influence. A region of influence is the vol-
ume of space in the scene that the light affects. Adding
lights to a scene is as easy as using the addChild() method
on the content branch group.

Figure 2 Mars visualization scene graph design

58 June 2004 www.SYS-CON.com/JDJ

FEATURE
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

A typical scene uses ambient light combined with two direc-
tional lights. Our Mars landscape uses ambient light and two
spotlights.

Creating the Landscape of Mars
With these Java3D concepts under our belt, it’s time to turn

our attention to creating content. We need a way to create real-
istic geometry and appearance objects for a Mars landscape.
This is where we can use publicly available data to do both.
Several successful Mars missions have accumulated terabytes
of photos and data. The Mars Global Surveyor (MGS) was one
of those missions that carried several scientific instruments.

One of the instruments aboard the MGS was the Mars
Orbiter Laser Altimeter (MOLA). If you’ve been to a home
improvement store lately you’ll conceptually understand how
this instrument works. The latest home improvement gadget is a
laser measuring tape. You point the gadget at a wall and it pre-
cisely measures the distance between you and the wall. The
MOLA took over one billion measurements while the MGS cir-
cled the planet for 2.5 years. At the highest precision, those
results were used to create a huge matrix of altitude measure-

ments every 0.00781 degrees of longitude and latitude. This high
precision data can detect objects as small as 460 meters, making
it ideal for major terrain features, but you won’t see the rock-
level details seen in rover photographs. Today this data is used
by NASA for mission planning and is available for the public to
download as MOLA Mission Experiment Gridded Data Records
(MEGDR). The MEGDR data is available at other resolutions as
well, providing us with a wealth of geometry data.

The MOLA data can be used with a Java3D QuadArray object
to create an accurate Mars geometry. The MOLA data is organized
as a large two-dimensional matrix with the longitude and latitude
serving as the dimensions. The value at a given longitude and lati-
tude is the average altitude for that area. A QuadArray object can
be used to draw an array of vertices as individual quadrilaterals
using a group of four vertices to define a quadrilateral. We’ll use
four neighboring MOLA data elements as vertices to create a
series of quadrilaterals across an area of interest. The geometry of
the planet surface is created by mapping the longitude, latitude,
and altitude of the MOLA data to three-dimensional points need-
ed for the vertices of the QuadArray. The following code uses
GeometryInfo to easily create a geometry object.

...

1 GeometryInfo gi =

new GeometryInfo(

GeometryInfo.QUAD_ARRAY);

2 ...

// Map MOLA data to 3D points in

// Point3d[] coordinates variable

3 gi.setCoordinates(coordinates);

4 // Other texture or coloring tasks

5 NormalGenerator ng = new

ormalGenerator();

6 ng.generateNormals(gi);

7 Geometry g = gi.getGeometryArray();

Once the MOLA data is converted into three-dimensional
points, a NormalGenerator can be used to finish the geometry
object. A normal is a unit vector that defines the orientation of
a surface such as a quadrilateral or triangle. Java3D uses the
normal of a surface for hidden surface removal and to render
the lighting effects of visible surfaces. The NormalGenerator
computes the normal vectors for the quadrilaterals in the
QuadArray and stores the results in the GeometryInfo object.
You may have noticed that we skipped over line 4. This is where
some impressive effects can be implemented with Java3D: ver-
tex coloring and texture mapping.

Vertex Coloring
The Jet Propulsion Lab (JPL) and the MOLA Science Team have

published numerous color-coded topographical maps of Mars.
Colors are used to signify altitude ranges with colors blending nice-
ly from one altitude to the next. This technique can be replicated in
Java3D by using the GeometryInfo and vertex coloring. Java3D uses
the Material object of a shape to determine the color unless the
geometry has colors assigned. Colors are assigned to each vertex by
first determining the color (based on altitude in this case) for each
vertex. The array of colors is then set on the GeometryInfo object
by using the setColors() method. The JPL color scheme can be
reproduced by using vertex coloring in combination with smooth
shading to produce results similar to Figure 4. Other available data
such as soil element composition can be used to overlay hematite
deposits on your landscape. You could do this with a special vertex
color at the location of the hematite deposits or create an image
and overlay the image using texture mapping.Figure 3 The affect of using different appearance options (wire frame, flat, smooth and textured)

60 June 2004 www.SYS-CON.com/JDJ

FEATURE
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

Texture Mapping
A photograph is the most striking and realistic overlay. There

are literally thousands of pictures of the surface of Mars but we
need undistorted pictures of the entire planet. Luckily, the United
States Geographical Survey (USGS) Astrogeology Research
Program has gone to the trouble of creating precisely what we
need. They have taken Viking 2 era photographs and processed
them to eliminate spherical distortions and aligned the resulting
photograph mosaics with landmarks in the MOLA data. The
result is called the Mars Global Digital Image Mosaic (MDIM),
and includes 30 files covering the planet in a form we can use,
except for the poles. The highest-resolution photographs are four
times more detailed than the MOLA data, but still represent
about a football field per pixel. Future releases of MDIM will
include the poles and even more higher-resolution photographs.

The number of files in the MDIM poses a challenge to
allow the rendering of any location. The MDIM is divided
into regions based on the USGS Mars Chart (MC) series of
printed maps. The MC regions form a staggered grid and the
most useful, high-resolution images are far too large to cre-
ate one large composite image. The solution is to use the
imaging support provided by ImageIO, BufferedImage, and
AffineTransform objects to create our own personal mosaic
of the area to be rendered. Once this image is created it can
be used with Java3D as a photographic overlay.

As Figure 1 shows, Java3D supports the draping of a photo-
graph over the geometry through texture mapping. Java3D
automatically renders the photograph as a texture, provided we
tell Java3D how to map the pixels in the texture to the vertices
in the geometry. Java3D uses a simple texture coordinate sys-
tem that specifies the horizontal and vertical texture coordi-
nates as values ranging between zero and one. Similar to how
we demonstrated vertex colors, texture coordinates must be
determined for each geometry vertex. An array of texture coor-
dinates is then set on the GeometryInfo object by using the
setTextureCoordinates() method. To finish the appearance of
the landscape, the texture and how to combine it with the
geometry color is set in the TextureAttributes object. There are
many ways to combine the texture color with the geometry
color, but we’ll use the MODULATE option. This option takes
the product of the texture and geometry colors to create the
final color. Colors in Java3D use the RGB model with each color
component ranging between zero and one. Because the Mars
photographs are black and white, the resulting product is a very
realistic coloring of the landscape.

Finishing Touches
The appearance of the landscape looks great, but environ-

mental effects such as clouds and a sun will make it even bet-
ter. Java3D supports enough tools to fake a great atmosphere
including a fog shape that can be any color. Using a gray fog
will give our Mars landscape more apparent depth. A black fog
can be used to create an eerie fade to a dark unknown. The fog
does not interact with lights in Java3D nor does the fog have
volume, both of which would allow us to create clouds. An
atmosphere with clouds takes a bit more creativity, but we
have already explored everything you need to know to create a
reasonable atmosphere.

The atmosphere in Figure 1 is accomplished by surround-
ing the scene with a huge textured sphere. The sphere is one
of the geometries supplied by Java3D that can automatically
create normal vectors and texture coordinates. Simply provide
the color and texture in an appearance object and Java3D
combines them to create a sky sprinkled with wispy clouds.
The atmosphere comes alive when we light it up with a sun.

Our Mars landscape uses ambient light and two spotlights
to create the sun in the dusty atmosphere. Here is where we
can take advantage of a missing feature of Java3D. Because of
the computational requirements, Java3D does not automati-
cally render true shadows. Consequently, light passes through
objects and fully lights the area where shadows would natural-
ly occur. The sun can be implemented with a spotlight just
outside of the atmosphere sphere. Java3D renders the concen-
trated light on the sphere as a circle and light passes through
the sphere to light the planet surface below. A second spotlight
with a wider spread is used to create an aura of the sun. The
lighting effects of the spotlights on the atmosphere sphere give
the impression of a sun shining down on the landscape.

Explore Away
Java3D is a powerful programming interface able to handle

many 3D programming tasks. This article scratched the surface
of what is possible, so while you explore the Mars surface think
about using Java3D for GIS studies, medical imaging, 3D puzzle
games, or educational programs. The sky is no longer the limit.

References
• Java3D: http://java.sun.com/products/java-media/3D/

index.jsp
• Mars Global Surveyor Mission: http://marsprogram.jpl.

nasa.gov/mgs/
• Mars Orbiter Laser Altimeter: http://marsprogram.jpl.

nasa.gov/mgs/sci/mola/mola.html
• MOLA Science Investigation: http://ltpwww.gsfc.nasa.gov/

tharsis/mola.html
• MOLA MEGDR archive: http://pds-geosciences.wustl.edu/

missions/mgs/megdr.html
• Mars Digital Image Mosaic: http://astrogeology.usgs.gov/

Projects/MDIM21/
• Mars Locations: http://planetarynames.wr.usgs.gov/mare/

mareTOC.html
• Java3D Resources: www.j3d.org

Acknowledgments
• MDIM photographs are in the public domain and are

courtesy of the USGS Astrogeology Research Program.
• MOLA data courtesy of the PDS Geosciences Node of

Washington University in Saint Louis.
• Thanks to the MOLA Science team (Neuman) for their

help in understanding the JPL topographical color
scheme.Figure 4 Vertex coloring and smooth shading at work

61June 2004www.SYS-CON.com/JDJ

he Beanshell preprocessor, or
BPP for short, is intended to be a
convenient and powerful prepro-
cessing tool for Java developers.

It’s convenient because the preproces-
sor is based on Beanshell, which is
essentially interpreted Java. This means
that Java or Beanshell programmers can
quickly use all of BPP’s features. It’s
powerful for the same reasons: all the
power of the Java SDK with the conven-
ience of the Beanshell scripting lan-
guage is available as double payment:
once as a development language and
once as a preprocessing language.

In the current world of sexy words for
new concepts in software development,
a new preprocessor is sure to draw a
yawn. But for Java developers, this pre-
processor can revolutionize core soft-
ware development. The reason is that it
isn’t actually just a new processor, but an
entirely different kind of preprocessor: a
symmetric preprocessor. A language
with a symmetric preprocessor gives the
full power (and syntax) of the language
as a preprocessor, including the provi-
sion for a preprocessor, and so on.

Getting BPP and Beanshell
BPP is available as an executable JAR

file from http://bpp.sourceforge. net.
Beanshell is available from http://bean-
shell.org. BPP uses Beanshell under the
hood and so must find its JAR file in the
class path. Putting the bsh-2.0b1.jar in
your classpath ensures it will be found.
Once this has been set up correctly, use
the command:

java bsh.Console

from a command shell to start up the
Beanshell desktop. A windowed
Beanshell desktop should appear. In
the window, type:

you="Jay R. EE";

print("Welcome, " + you);

After seeing the expected message,
add a sticky note to your monitor with the
words: “Learn Beanshell now; save time

later.” For now, just close the Beanshell
desktop (see Figure 1). BPP does not use
the Beanshell desktop; instead it uses the
bsh.Interpreter class internally as a light-
weight Java interpreter.

Show Me How Useful BPP Is!
BPP allows you to write Java code

that writes Java code in a convenient
way. The preprocessor lines begin with
a # sign and are executed at preprocess
time, while normal lines are undecorat-
ed. $id and $(expr) on otherwise normal
lines are translated in a natural way. For
example, the following BPP source file
will create the traditional “Hello World”
Java program, but with the message
appearing in four different languages.

#

greetings=new String[] {

"hola mundo",

"ciao mondo",

"hello world",

"\u043F\u0440\u0438\u0432\u0435\u0442

\u043C\u0438\u0440",

};

#

public class Xample1 {

public static void main(String[] args) {

#for (i=0;i<greetings.length; ++i) {

System.out.println("$(greetings[i])");

#}

}

}

If you save the above code in a file
named Xample1.java.bpp, then run-
ning BPP with the line

java -jar bp.jar Xample1.java.bpp

will produce the following text in
Xample1.java:

The last line is “hello world” in
Russian, and may appear strangely on

systems that don’t understand UTF-8
encoded unicode. Point is, the #’ed
lines are executed at “preprocess
time” by BPP. This results in a Java
source file with, in compiler optimiza-
tion parlance, an “unwound loop.”

Admittedly, unwinding the above
loop at preprocess time will provide no
particular advantage over executing the
loop at runtime. There are places where
such unwinding could make a great deal
of difference. Similar preprocessor code
could write substantial “boiler plate”
code that you might otherwise use a
more traditional “copy/paste/edit”
approach on, but we will leave that to
the reader’s imagination (and online
tutorials on the BPP Web site). The next
example takes on a loftier software engi-
neering goal: compile-time versus run-
time safety.

Safe Sets
It’s a basic principle of software

engineering that the earlier you
find an error, the less expensive it
is. The collections framework in Java
is a good example of something that’s
runtime safe (because you can’t put
in an apple and treat it like an orange
without a ClassCastException), but
it isn’t compile-time safe, since you can
add any object to any collection, even if
you only really wanted oranges in it.

BPP can quickly create compile-time
type-safe wrapper classes for collections
(or wherever else you need them).
Listing 1 provides a snippet of the type-
safe template for Collection.

To use the code in Listing 1, save it

BPP: The Beanshell Preprocessor
Increase your productivity benefits

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E
TUTORIAL

by Warren MacEvoy

T

Dr. Warren MacEvoy has been
an editor of corporate Java
training manuals and lead

Java instructor for Sun Java
programmer certification
programs. He has been a

programmer and educator
since time immemorial (or

a least since 1995). He is the
Rocky Mountain Regional

director of the ACM
intercollegiate programming

contest, which is his main
contribution to fun for young

software engineers.

wmacevoy@mesastate.edu Figure 1 Beanshell desktop

62 June 2004 www.SYS-CON.com/JDJ

in a file called “makeTypedCollec-
tion.bpp” and generate the equivalent
Beanshell script with:

java -jar bpp.jar -b makeTypedCollection.bpp

The -b option tells BPP to create
the script, but not execute it. The
script is written in this case to
makeTypedCollection.bsh. With this
handy “template” around, creating a
compile-time type-safe collection is a
snap. For example, a string collection
would be the following smidgen of
lines in StringCollection.java.bp:

#source("makeTypedCollection.bsh");

#makeTypedCollection("StringCollection","jav

a.lang.String");

Notice that I source the Beanshell
script generated by BPP, not the BPP
script itself.

There is a philosophical point here:
judicious use of BPP can move many
checks from runtime to compile time.
This can make an order-of-magnitude dif-
ference in how long it takes (and expen-
sive it is) to find and correct mistakes.
Now let’s look at how BPP does its magic.

How Does It Work?
BPP is similar in nature to servlets and

php (and a very similar Perl-based pre-

processor, perlpp). It works by translating
the BPP code into Beanshell code under
the following rules:
• Lines with a # (pound) in column one

have the remainder of the line copied
exactly to the Beanshell script. For
example:

#n=10;

#for(i=0; i<n; ++i) {

becomes

n=10;

for(i=0; i<n; ++i) {

in the Beanshell script.
• Lines with a " (double quote) in col-

umn one have the remainder of the
line “quoted magically.” This means it
becomes a print statement with
$IDENTIFIER and $(EXPRESSION)
patterns concatenated in. Two com-
promises were made in the
magic translation:
–$ is a legal start and part of a Java
identifier. If you need to have such a
value in a BP script use $(my$-
strange$id).

–When $ is not succeeded by an iden-
tifier, a left parenthesis, or another $,
it simply represents a single $. $$ on a
magically quoted line represents a
single $. For example:

#static import bpp.Format.*;

"Dear $title $lastName;

"You owe $$$(N(blnc,"#,###.00")).

becomes

static import bpp.Format.*;

print("Dear "+title+" "+lastName+";");

print("You owe $"+(N(blnc,"#,###.00"))+".");

in the Beanshell script. For those
new to Beanshell, print() is equiva-
lent to System.out.println(). The
N(Number n,String f) method is a
static member of the bpp.Format
class as a convenience for format-
ting numbers.

• Lines with a ' (single quote)
in column one have the remain-
der of the line ‘quoted exactly.’
This generates a print statement
in the Beanshell script that will
faithfully reproduce the line of
text. For example:

'#static import bpp.Format.*;

'Dear $title $lastName;

'You owe $(N(blnc,"$#,###.00")).

becomes

print("#static import bpp.Format.*;");

print("Dear $title $lastName;");

print("You owe $(N(blnc,\"$#,###.00\")).");

in the Beanshell script.
• Lines with none of the above “trans-

lation codes” have the default trans-
lation applied to them. This is “quot-
ed magically” unless the -q (‘quote
exactly by default’) option is passed
to BPP.

Putting these together for the first
example, the first BPP source file,
Xample1.java.bpp, produces the
Beanshell script:

greetings=new String[] {

"hola mundo",

"ciao mondo",

"hello world",

"\u043F\u0440\u0438\u0432\u0435\u0442

\u043C\u0438\u0440",

};

print("");

print("public class Xample1 {");

print(" public static void main(String[]

args) {");

for (i=0;i<greetings.length; ++i) {

print(" System.out.println(\""+(greet-

ings[i])+"\");");

}

print(" }");

print("}");

Executing this script with Beanshell
generates the promised pure Java source
file shown above as Xample1.java.

Conclusion
BPP facilitates versioning, templates,

macros, optimizations, and compile-time
type safety. These things are a normal
expectation of preprocessors. However,
because the preprocessor is essentially
the same full-featured language as the
target language, including the fact that it
has a preprocessor, these features are
much more accessible than, say, C++
templates are to C programmers. This
provides big productivity benefits.

Here are a few other gains.

Have Fun!
Writing code over and over that’s just

a little different from the last time is bor-
ing. After the third time, you usually see
the part that’s staying the same and
what is changing. With BPP you can
codify that and stick to the fun (new)
stuff.

Big Tools Make Little Ones
You can use BPP in development

TUTORIAL
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

Beanshell is a get-to-the-point Java. Typing:

you="Jay R. EE";

print("Welcome, " + you);

in Beanshell is equivalent to compiling and executing the following Java code:

public class SomeClass

{

public static void main(String[] args)

{

String you="Jay R. EE";

System.out.println("Welcome, " + you);

}

}

Which one would you rather type? See www.beanshell.org for many
useful resources on Beanshell. For now, here is what I claim to be the
shortest tutorial of a production programming language in history:

Beanshell is an interpreted version of Java with optional types.

Types are great for safety, but they can turn the quick and dirty into the
slow and tedious. Beanshell adheres to types you specify, but also allows
unspecified types so you can choose your safety level. As of version 2.0,
Beanshell has seamless integration with JDK 1.3 and above. Thus Beanshell is
a flexible superset of Java that I encourage any Java developer to get to know.

You Is What?

63June 2004www.SYS-CON.com/JDJ

and take advantage of the latest and greatest JDKs in your devel-
opment environment to produce solutions in any target language/
architecture. BPP is used in this way to support a multilanguage
environment called FRAMES.

Protecting IP
The JavaBean model reduces an uber-model to one that

solves a particular problem. Giving such a bean to someone
else allows them to reverse-engineer your IP. BPP can generate
a specific solution to a problem without revealing any general
techniques on how that specific solution was constructed. Karl
Castleton is writing a BPP-based tool to generate 80% of the
boiler plate code for a Java servlet/ MySQL Web site based on an
XML description of the database architecture. This includes the
SQL initialization, basic form pages, and compile-time-safe SQL
access classes.

Simplification
In both the above cases, the code that BPP writes is as readable as

what a specific programmer would have written to solve the same
problem. For example, the above SQL framework generates code that
a Java programmer who knows nothing about BP, XML, or even SQL
can easily use. In the FRAMES application, BPP writes specific docu-
mentation appropriate for each supported target language based on
a single document root.

Enjoy BPP!

References
• Beanshell: www.beanshell.org
• BPP: http://bpp.sourceforge.net
• FRAMES (click on the “FRAMES” link): http://mepas.pnl.gov/earth
• BPPSql: http://home.mesastate.edu/ ˜kcastlet/BPPSql.html
• perlpp: http://tldp.org/LDP/LG/issue44/macevoy/macevoy.htm

Listing 1
#void makeTypedCollection(String className,String element) {

public class $className {

public static class $(className)Iterator {

java.util.Iterator iterator;

public Iterator(java.util.Iterator _iterator) {

iterator=_iterator; }

public boolean hasNext() { return iterator.hasNext(); }

public $element next() { return ($element)iterator.next(); }

public void remove() { iterator.remove(); }

}

protected java.util.Collection collection;

public $className(Collection _collection) { collection=_col-

lection; }

public boolean add($element arg1) { return

collection.add(arg1); }

public boolean contains($element arg1) { return

collection.contains(arg1); }

public boolean remove($element arg1) { return

collection.remove(arg1);

public $(className)Iterator iterator() {

return new $(className)Iterator(collection.iterator());

}

}

#} // makeTypedCollection

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Agitar www.agitar.com 650-694-7572 37

Altova www.altova.com 978-816-1600 7

AMD developer.amd.com 408-749-4000 45

Borland www.go.borland.com/j6 831-431-1000 9

Business Objects www.businessobjects.com/v10/047 800-877-2340 27

Canoo Engineeri ng AG www.canoo.com/ulc 41 (61) 228 94 44 15

ClearNova www.clearnova.com/thinkcap 770-442-8324 31

DataDirect www.datadirect.com 800-876-3101 Cover II

Dice www.dice.com 877-386-3323 39

Dralasoft Corp. www.dralasoft.com/customers 303-468-6754 3

Enerjy www.energy.com 866-598-9876 4

Fiorano www.fiorano.com/downloads 800-663-362 47

Google www.google.com/cacm 650-623-4000 35

GreenPoint www.webcharts3d.com/demo 212-765-6982 41

H&W Computer Systems www.hwcs.com/wldj2.asp 800-338-6692 59

ILOG jviews-info-kit.ilog.com 1-800-for-ILOG 17

Inferdata www.inferdata.com 888-211-3421 49

InstallShield www.installshield.com/redefine 847-466-4000 25

JavaOne www.java.sun.com/javaone/sf 888-886-8769 65

Librados www.librados.com 888-341-4258 11

Northwoods Software Corp. www.nwoods.com/go 800-434-9820 57

Oak Grove Systems www.oakgrovesystems.com 818-440-1234 43

Parasoft Corporation www.parasoft.com/jtest 888-305-0041 53

Parasoft Corporation www.parasoft.com/soaptest 888-305-0041 23

Quest Software, Inc. http://www.quest.com/jdj 800-663-4723 Cover IV

Rascal Software www.rascalsoftware.com/jdj 206-624-7300 21

ReportingEngines www.reportingengines.com 888-884-8665 33

SESMA www.sesma.com/jdj 949-559-SESMA 55

Sleepycat Software www.sleepycat.com/bdbje 510-597-2128 29

Software FX www.chartfx.com 800-392-4278 Cover III

Visual Paradigm www.visual-paradigm.com 852-820-1912 19

WebAppCabaret www.webappcabaret.com/jdj.jsp 831-464-6941 51

Web Services Edge 2005 East www.sys-con.com/edge 201-802-3069 66

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Dr. Piet Jonas in his “Type Safe Collections” article also addresses type safety, but
in another manner.

Jonas’ idea is to verify the types for collections at insertion time using runtime
type information. This causes an exception to be thrown early (at insertion time)
rather than late (at extraction time). In either case, the exception is thrown at
runtime.

The type-safe wrappers we suggest using here allow for compile-time safety.

64 June 2004 www.SYS-CON.com/JDJ

elcome to the June edition of
the JCP column! Each month
you can read about the Java
Community Process: newly

submitted JSRs, new draft specs, Java
APIs that were finalized, and other news
from the JCP. This time we’ll discuss a
long-running JSR that has successfully
finished, a new version of the J2EE plat-
form that has been proposed, as well as
JavaServer Pages, but first we’ll start
with some number crunching.

Are We Getting Better At It?
The JCP has been in operation a little

over five years. During this period the
community has started just over 240 JSRs

and finished a third of those. Over these
five years the JCP has changed consider-
ably with the installment of the Executive
Committees, individual membership in
addition to company membership, and
the ability to use open source software
licenses. This raises the question: What
impact do these changes have on the
speed with which the community
process delivers new specifications? In
the first half of its life the JCP finalized
about the same number of JSRs as during
the last two years (40 versus 44). The
speed with which JSRs now complete is
significantly higher: JSRs now enter
Public Review an average of 100 days
sooner than before and finish on average
200 days earlier. I believe this is as much
a result of process improvements as it is
of a more experienced community: many
of today’s spec leads have led JSRs before
so they know how to work with an expert

group, and how to gain and capture
developer feedback. With JCP 2.6 it’s now
even easier to receive and give feedback;
let’s see how fast the technology evolu-
tion can really go!

The J2EE Technology, Version 1.5
New on the roll call is JSR 244, which

proposes the next version of the J2EE
platform. Ease of development is the
main theme for this version. As the
umbrella JSR for the server-side plat-
form, it brings together several JSRs
already well underway, such as JSR 181
(Web Services Metadata), JSR 220 (EJB
3.0), JSR 222 (JAX-B 2.0), JSR 224 (JAX-
RPC 2.0), JSR 127 (JavaServer Faces),

and JSR 52 (JSTL 1.1). The JSR is pro-
posing an aggressive schedule that
would see this version completed in the
second half of 2005.

JSR 245 – JavaServer Pages 2.1
As the submitter for the J2EE 1.5 plat-

form JSR notes, some modifications are
needed in this API so that there will be a
smooth integration with JavaServer Faces.
This JSR proposes to further enhance the
JSP 2.0 Expression Language. Some of the
enhancements it will be considering are:
• Putting the expression language

chapter into its own specification
document

• The ability to plug in variable
resolvers and property resolvers

• The ability to express references to
bean methods and bean properties

• The ability to defer expression
evaluation

These and other works will be under-
taken in close consultation with the
JavaServer Faces expert group.

Public Review
The Content Repository JSR led by

Day Software has entered Public
Review. This effort has migrated to the
new JCP 2.6 process; this means the
SE/EE Executive Committee will be
voting on this JSR during the last week
of the review. This specification defines
content services that can be performed
on a content repository. Examples are
author-based versioning, full textual
searching, access control, and event
monitoring.

JSR 75
PalmSource and IBM, co-spec leads,

successfully navigated the PDA
Optional Packages for J2ME JSR in and
through the Final Approval Ballot.
While time-wise it was a bit of a jour-
ney for this JSR, it’s now been complet-
ed and is available for implementation
and distribution. The JSR is meant to
be used on top of CLDC environments.
It consists of two optional packages:
Personal Information Management
(PIM) for management of items like
calendar, address book, and to-do lists,
and the FileConnection package that
provides access to a device’s file system
including external memory cards and
the like.

That’s it for this month. As usual, I’m
very interested in your feedback. Please
e-mail me your comments, questions,
and suggestions.

From Within the
Java Community Process Program
The technology evolution

JSR WATCH

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Onno Kluyt

Onno Kluyt is the
director of the

JCP Program
Management Office,

Sun Microsystems.

onno@jcp.org

W

The speed with which JSRs now complete is significantly higher:
JSRs now enter Public Review an average of 100 days sooner than

before and finish on average 200 days earlier”
“

Co
py

rig
ht

 ©
 2

00
4

Su
n

M
ic

ro
sy

st
em

s,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

. J
O0

40
16

4.
 S

un
, S

un
 M

ic
ro

sy
st

em
s,

 th
e

Su
n

lo
go

, J
av

a,
 th

e
Ja

va
 C

of
fe

e
Cu

p
lo

go
, J

av
aO

ne
, t

he
 Ja

va
On

e
lo

go
, J

av
a

De
ve

lo
pe

r C
on

fe
re

nc
e,

 a
ll

Ja
va

-b
as

ed
 m

ar
ks

 a
nd

 lo
go

s,
 a

nd
 J2

SE
 a

re
 tr

ad
em

ar
ks

 o
r r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

 i
n

th
e

U
ni

te
d

St
at

es
 a

nd
 o

th
er

 c
ou

nt
rie

s.

Sponsored by Produced by

June 28–
July 1, 2004
Moscone Center
San Francisco, CA

JavaTM technology is everywhere, improving the digital experience

for everyone. It all starts at the JavaOneSM conference, your source

for cutting-edge knowledge and proven solutions. You’ll learn

how to tap into the full power of the Java platform: platform inde-

pendence; compatibility with and between editions; open toolsets

and technologies supported by a global developer community.

The JavaOne conference offers hundreds of in-depth technical

sessions in:

Topic 1—The Foundations: Core J2SETM Technologies

Topic 2—Core Enterprise Technologies

Topic 3—JavaTM Technology on the Desktop

Topic 4—Java Technology for the Web

Topic 5—Java Technology for Mobility

Topic 6—Dissecting the Implementation: Solutions

Topic 7—Intriguing and Unexpected: “New and Cool”

Save $100! Register by June 27, 2004,

and receive $100 off the full Conference

package. Priority code: ADARZKND

Register at
java.sun.com/javaone/sf

Go Anywhere You Want
with Java

TM

Technology

It all starts at the JavaOneSM conference.

Benefit from four days

of in-depth training and

networking with the

foremost leaders and

creators of JavaTM

technology in:

Enterprise

Mobility

Web Services

Desktop

Im
ag

e
cr

ed
it:

 N
AS

A/
JP

L/
Ca

lif
or

ni
a

In
st

itu
te

 o
f T

ec
hn

ol
og

y

Job Discernment

@ THE BACKPAGE

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Jason Bell is the founder of
www.bigpharmanews.com

and is also involved with the
development of RSSLibJ,

an API for writing and
reading RSS files.

jasonbell@sys-con.com

hose of you kind enough to read
my editorials for JDJ would have
noticed that I started a new job. A
fresh start, a new year, a colossal

waste of my time it turned out. Startup
companies can be odd to work for
sometimes and you have to read
between the lines when it comes to
statements from directors and share-
holders. To cut a short story shorter
than the original, I was laid off after four
weeks and given the excuse that my
math was not at PhD level, which is
interesting as it was never mentioned
during the five hours of interviews and
pair programming exercises. In the UK
if you have worked less than 12 weeks
with an employer, they only have to
serve you with one week’s notice.

With a new wave of startups coming
again with the possible tech recovery, I
present to you my example of what not
to do.

Regardless of who you are, what you
do, or what you get paid you must get
everything in writing. And I mean
everything. Get your employment con-
tract sorted out before you start, not
within the first couple of weeks on the
new job. Also, take time to read your
contract carefully and don’t be afraid to
ask questions. In terms of a probation-
ary period, at a new employer I would
seriously negotiate a fixed time before
the employer can serve notice.

I am always eager to get feedback
from my new peers so I ask a lot of

questions about how they think things
are going. The responses I received were
always “You’re doing brilliant” or
“Excellent” with huge amounts of
enthusiastic looks. The next week I was
served one week’s notice and a very
cold shoulder.

Most employment recruitment is
done on the basis of your history. You
arrive at your interview with your
résumé and wow them at the interview
and then you get started. You spend an
awful amount of time convincing the
company why they need you. Now it’s
time to get the company to explain why
you need them. Sounds simple, doesn’t
it? It’s overlooked the majority of the
time. Employers have one goal in mind:
“to maximize long-term shareholder
value by the selling of products and
services”*; the company is not there
solely for your career development.
Training programs and personnel men-
toring are all very well but the company
has one main aim in mind – to make
money. If you find a company is being
overly keen to help you beyond all rea-
son, start asking yourself some serious
questions. Most of the training I have
done has been on my own time in addi-
tion to what I’ve learned from complet-
ing the task in hand.

Take time to research the company.
Look at their Web site and if they don’t
have one, ask why. Check for the exis-
tence of proper e-mail services to be
sure the company is not running all

their communication from a free Web
mail account. If you have questions, ask
them. Listen to the answers very care-
fully; this can be an indication of how
things are really going for the company.

Your outside interests should not dic-
tate how you are going to perform with-
in a company. It became apparent that
my complete lack of interest in role-
playing games was proving to be a
problem as that was the only way that
the rest of the team would socially
interact.

Finally, keep an open mind. Though
all things may look completely left of
center, the company you are working
for may just be a diamond waiting to
shine. Looking back I’m happy that the
event happened as it spurred me on to
get a grip and get some other projects
completed. It also made me seriously
look at the network of contacts that I
have and how to maximize them. Not
to use them so much that they hate the
sight of your e-mails, but to talk to
them, and see what the industry is
doing. Share what you are doing and
how things are going. Developers are
suppliers to an extremely competitive
industry and how we act professionally
will ultimately determine which way
our industry will head.

Reference
• *Sternberg, E. (2000). Just Ethics,

Business Ethics in Action. Oxford
Press.

T
Jason Bell

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

